

Users’Manual 5.7

Users’Manual 5.7
2/191

Contents

1 Knowledge-Builder 3
1.1 Basics . 3

1.1.1 The Knowledge Builder application . 3
1.1.2 Building blocks . 6
1.1.3 Type hierarchy - Inheritance . 9
1.1.4 Create and edit objects . 11
1.1.5 Graph editor . 15

1.2 Definition of schema / model . 25
1.2.1 Define types . 25
1.2.2 Relation types and attribute types . 34
1.2.3 Model changes . 45
1.2.4 Representation of schema in the graph editor 49
1.2.5 Metamodeling and advanced constructs 52
1.2.6 Indexing . 61

1.3 Searches/Queries . 71
1.3.1 Structured queries . 72
1.3.2 Simple Search / Fulltext search . 91
1.3.3 Search pipeline . 96
1.3.4 Model "hit" . 112
1.3.5 The search in the Knowledge Builder . 114
1.3.6 Special cases . 114

1.4 Folder and registration . 118
1.5 Import and export . 119

1.5.1 Mapping of data sources . 120
1.5.2 Attribute types and formats . 161
1.5.3 Configuration of the export . 163
1.5.4 RDF-import and -export . 165
1.5.5 External Index in Elasticsearch . 175
1.5.6 Restore deleted individuals from a back up 188
1.5.7 Transport selected schema . 191

Users’Manual 5.7
3/191

1 Knowledge-Builder
1.1 Basics
When using i-views, databases work the way people think: simple, agile and flexible. That
is why in i-views many things are different than relational databases: we do not work with
tables and keys, but with objects and the relationships between them. Modelling of the data
is visual and oriented towards examples so that we can also share it with users from the spe-
cialist departments.

With i-views we do not set-up pure data storage but intelligent Knowledge Graphs which al-
ready contain a lot of business logic and with which the behaviour of our application may, to
a large extent, be defined. To this end we use inheritance, mechanisms for conclusions and
for the definition of views, along with a multitude of search processes which i-views has to
offer.

Our central tool is the knowledge builder, one of the core components of i-views. Using the
knowledge builder we can:

• define the scheme but also establish examples and, above all, visualise
• define imports and mappings from a data source
• phrase requests, traverse graph data, process strings and calculate proximities
• define rights, triggers and views

All these functions are the subject of this documentation.

1.1.1 The Knowledge Builder application
The executable application "kb" is an acronym for the i-views "Knowledge Builder" by which
we administer the Knowledge Graph. When talking about the Knowledge Builder, we use
special terms for orientation:
• Backend: The Knowledge Builder application (KB) by itself
• Frontend: Web frontend which is displayed in the browser by means of the viewconfig-
uration mapper application (VCM) which is run by the Knowledge Builder application.
• Volume: The volume comprises all file data of the Knowledge Graph which is acessed
by the Knowledge Builder.
• Knowledge Graph: The KNOWLEDGE GRAPH is the data core of the i-views Knowledge
Graph platform. It is kept as a top type besides the FOLDER section and the TECHNICAL
part of the Knowledge Builder application.
• Element / Semantic element: An element is the smallest building block of the Knowl-
edge Graph. An element can be either a type or an instance thereof, comprising object
types and their objects, attribute types and their attribute instances as well as relation
types and the individual relations. Everything within the Knowledge Builder ist built up
in forms of this semantic elements logic.

Users’Manual 5.7
4/191

For further information, see the glossary of this documentation.
When we start the Knowledge Buidler application, the login dialog is shown:

• Server: For the server, there are three kinds of server access available:
(without server): The volume of the Knowledge Graph can be accessed via the local
filesystem. In this case, the volume needs to be located within a "volumes" folder which
is located in the same directory as the Knowledge Builder application itself. Since no
mediator is in use, only one client application can access the volume at the same time -
for example, the Knowledge Builder or the bridge for web frontend access.
localhost: This option is for accessing the volume via a mediator which is located int the
same directory as the volumes folder and the Knowledge Builder. The mediator is an
additional application that allows simultaneous access of different client applications,
for example Knowledge Builder and bridge for web frontend access.
server address and server port: Since the Knowledge Builder is preferrably used as
one of many clients that grants collaborative access to the Knowledge Graph volume on
a server via a mediator, this is the most often used kind of access. Server address an
port are written colon-seperated in forms of serveraddress:portnumber.
• Semantic network: The name of the relevant existing volume must be specified here.
Note: For creating a new volume, the admin tool is needed.
• User: User name for volume access.
• Password: Password for volume access.

The Knowledge Builder user interface is divided into follwing areas:

Users’Manual 5.7
5/191

• Organizer: Type hierarchy view on the left side of the Knowledge Builder screen.
• Instance list/object list/list view: Upper right part of the Knowledge Builder that
shows the instances of the respective type which has been selected in the organizer.
Instance lists only contain table views. If severeal table views are defined for one type,
they are separated by tabs.

• Detail editor / detail view: Lower right part of the Knowledge Builder in which a de-
tailed view of the instance is shown which has been selected in the instance list. The
detail view is able to contain several type of views.

Therefore, editing properties of a semantic element is done by first selecting the subtype in
the organizer , then selecting the instance of the list view and by editing the properties in the
detail editor .
Besides the areas, there are further actions and selections available as follows:

Users’Manual 5.7
6/191

• Global search: The global search works for all elements of the Knowledge Graph. Addi-
tional searches can be added via drag&drop of queries from the folders into the search
input field.
• List tabs: The list views are divide up into instance list and subtypes list. As a new
feature since i-views 5.4, a schema tab provides a sole detail editor for schema definition
of properties and property types for the selected subtype.
• Global actions: The global context menu of the Knowledge Builder offers element-
independent actions for the user. For more information, see the respective chapter at
the beginning of the i-views Knowledge Builder Technical Handbook.
• Global settings: The global settings provide user dependent settings for every user
and administrative settings which are available for administrators only. For more infor-
mation, see the respective chapter at the beginning of the i-views Knowledge Builder
Technical Handbook.
• Newwindow: This button allows opening listed views, such as import mappings etc. so
that the window keeps persistent despite a different selection in the organizer.
• Context menu: This context menu provides all actions concerning the relevant seman-
tic element. Clicking onto the big circle opens the context menu, clicking on one of the
small cicrcles opens the element in a graph editor. The big circle is also for dragging and
dropping the element into the graph editor or a semantic elements folder.
• Community: If several users are logged in, the are listed here and can be contacted via
chat for collaborative work.

For further information, see the following chapters.

1.1.2 Building blocks
The basic components of modelling within i-views are instances and their types:

• objects

Users’Manual 5.7
7/191

• relations
• attributes

• object types
• relation types
• attribute types

Examples for specific objects are John Lennon, the Beatles, Liverpool, the concert in Lither-
land Town Hall, the football world cup in Mexico in 1970, the leaning tower of Pisa, etc.:

We can link these specific objects together through relationships: "John Lennon is a member
of the Beatles", "The Beatles perform a concert in Litherland Town Hall".

Additionally, we have introduced four types here: specific objects always have a type, e.g.
the type of persons, type of the cities, the events or the bands - types which you may freely
define in your data model.

Users’Manual 5.7
8/191

The main window of i-views: on the left-hand side the types of objects, on the right-hand side the
respective, specific objects - here we can also see that the types of the i-views Knowledge Graphs
are within a hierarchy. You will find out more about the type of hierarchy in the next paragraph.
Even the relationships have different types: between John Lennon and the Beatles there is
the relationship "is member of"; between the Beatles and their concert the relationship could
be called "performed at" - if we want to generalise more, "participates in" is perhaps a more
practical type of relationship.

The same applies for attributes: in the case of a person thesemay be the name or the date of
birth. Specific persons (objects of the type ’person’) may then have name, date of birth, place
of birth, address, colour of eyes, etc. Events may have a location and a time span. Attributes
and relations are always defined with the object itself.

Users’Manual 5.7
9/191

1.1.3 Type hierarchy - Inheritance
We can finely or less finely divide types of objects: we can put the football world cup in 1970
into the same basket as all the other events (the book fair in 2015, the Woodstock festival,
etc.), then we only have one type called "event" or we differentiate between sport events,
fairs, exhibitions, music events, etc. Of course, we can divide all these types of events even
finer: sport events may, for example, be differentiated by the types of sports (a football
match, a basket ball match, a bike race, a boxing match).

In this manner we obtain a hierarchy of supertypes and subtypes:

The hierarchy is transitive: when we ask i-views about all events, not only all specific ob-
jects are shown which are of type event, but also all sports events and all bike races, boxing
matches and football matches. Hence, since the type "boxing match" is not only a subtype of
"sport event", i-views will reject a direct supertype / subtype relationship between event and
boxing match - with a note that this connection is already known.

The hierarchical structure does not necessarily have to have the structure of a tree - a type
of object may also have several upper types. However, an object may only have one type of
object.

If we then wish to join the aspects of a concert and major event we cannot do this in the
specific concert with Paul McCartney because we need the type of object "stadium concert"
in order to do this:

Users’Manual 5.7
10/191

Type hierarchy with multiple inheritance

The affiliation of specific objects with a type of object is also expressed as a relation in i-views
and may as such be queried:

When do we differentiate between types at all? Types do not only differ in icon and colour -
their properties are also defined in the types and when queried, the types can also easily be
filtered. The inheritance plays a major role in all these questions: properties are inherited,
icons and colours are inherited and when, in a query, we say that we wish to see events, all
objects of the subtypes are also shown in the results.

Users’Manual 5.7
11/191

Inheritance makes it possible to define types of relations (and types of attributes) further up in the
hierarchy of the object type and hence use them for different types of objects (e.g. for bands and
other organisations.

1.1.4 Create and edit objects
Creating specific objects

Specific objects (in the knowledge builder they are called "instances") may be created every-
where within the knowledge builder where types of objects can be seen. Based on the types
of objects, objects can be newly created via the context menus.

Users’Manual 5.7
12/191

An object can be created by means of the button "new" and using the named entered
In the main window below the header there is the list of specific objects already available.
In order that objects cannot inadvertently be created twice, the name of the object can be
keyed into the search button in the header. The search does not, by default, differentiate
between upper and lower case and the search termmay be cut off left and right (supplement
by placeholders "*" and "?"):

Editing objects

After entering and confirming the name of the object, further details for the object created
may be keyed into the editor. The objectmay be assigned attributes, relations and extensions
by using the respective buttons.

Users’Manual 5.7
13/191

When editing an object we can, in addition to linking it to another object, also generate the
target of the link if the object does not already exist.

For example, members of a music band are documented completely. Via the relation, we
want to link themember Ringo Starr with the object "The Beatles". If it is not yet clear whether
the object Ringo Starr is already documented in i-views you can use the search button to
ascertain this,

Users’Manual 5.7
14/191

or via the icon button, select ’Choose relation target’ from a searchable list with all
feasible targets of relation.

Users’Manual 5.7
15/191

Deleting the relation has a member may be accomplished in two different ways:

1. Delete in the context menu using the button further actions and the option ’delete’.
2. With the cursor over the button further actions and holding down the Ctrl key.

The target object of the relation itself will not be deleted as a result of this however. If an ob-
ject has to be deleted this is done via the button in the main window or via the context
menu directly on this object.

Objects may also be created using the graph editor. This process is described in the following
paragraphs.

1.1.5 Graph editor
1.1.5.1 Introduction graph editor
By using the graph editor, the Knowledge Graph with its objects and links can be depicted
graphically. The graph editor may be opened on a selected object using the graph button:

The graph always shows a section of the Knowledge Graph. Objects from the graph may be
displayed and hidden and you can navigate through the graph.

Users’Manual 5.7
16/191

In the graph editor not only a section of the Knowledge Graph may be displayed: objects and
relations may be edited as well.
On the left-hand side of a node there is a drag point for interaction with the object. By
double-clicking on the drag point all user relations of the object will be displayed or hidden.

Linking objects via a relation is carried out in the graph editor as follows:

1. Position the cursor over the drag point to the left of the object with the left mouse
button.

2. Drag the cursor in a held down position to another object (drag & drop). If several re-
lations are available for selection, a list will appear with all feasible relations. If there is
only one feasible relation between the two objects, this will be selected and no list will
be shown. An already existing relation can be reassigned to another element by drag &
drop, if the schema definition allows this.

Users’Manual 5.7
17/191

In order to display objects in the graph editor there are different options:
• Objects may be dragged from the hit list in the main window to the graph editor window
using drag & drop.
• If the name of the object is known it can be selected via the context menu using the
function "show individual".

Shortcut: If an object is to be hidden from the graph editor, it may be removed from there
by clicking it and dragging it from the graph editor holding down the Ctrl key. In doing so,
there will be no changes in the data: the object will exist unchanged within the Knowledge
Graph but it will not be displayed anymore in the current graph editor section.

New objects may also be created in the graph editor. To do this we drag & drop the type of
object from the legend on the left-hand side of the graph editor to the drawing area:

Users’Manual 5.7
18/191

If there are no types of objects to be seen in the legend you can search for them using a right
mouse click in the legend area. Following this, the name of the object will be given.

The editor will re-appear in which the possible relations, attributes and enhancements for
the object can be edited.

1.1.5.2 Operations on objects in the graph editor
The name can be changed later on in the Admin tool or the Knowledge Builder. The user
created in this way automatically has graph administrator rights. Right-clicking the object in
the context menu allows other operations to be executed. For the most part, this context
menu provides the same functions as the form editor, however also includes other graph
editor-specific components.

Users’Manual 5.7
19/191

The following graph editor-specific functions are available in this context menu:
• Hide node: The node can be hidden here.
• Navigation - Extensions: Opens the extensions for an object.
• Navigation - Calculated relations: Opens the calculated relations for an object.
• Navigation - Fix: Fixes the position of a node in the graph editor, so that it is not repo-
sitioned even when the layout is restructured. The fixed node can be undone using the
Release option.
• Navigation - Shortest path

1.1.5.3 View
The menu "View" provides many more functions for the graphic illustration of objects and
types of objects:

Users’Manual 5.7
20/191

Default settings: Opens the menu with the default settings for the graph editor. This
menu is also available in: global setting window -> register card "personal" -> graph.
There you can set whether attributes, relations and enhancements should appear in a small
mouse-over-window above the object and how many nodes at a maximum will be visible in
one step:
• Show bubble help with details: if the mouse pointer stops on one node the details of
the first ten attributes and relations will be displayed in a yellow window if bubble help
was previously activated. (check "show bubble help with details" in the global setting
window register card "personal" graph)

• Max nodes: if a node/object has a lot of adjacent objects it often doesn’t make sense to
show them all by clicking on the drag point.

Change Background: The background color can be changed or a picture can be set as back-
ground.
Auto hide nodes: automatically hides surplus nodes as soon as the number of desired
nodes is exceeded and shown. The number can be set in the input field "max. new nodes" in
the toolbar:

Users’Manual 5.7
21/191

Auto layout nodes: automatically implements the layout function for newly displayed
nodes.
Fix all labels: using this option the names of all relations are always visible, not only when
rolled over with the mouse. Alternatively, the description may be fixed directly in the context
menu of a relation.

Show internal names: displays the internal name of types of in brackets
recover hidden edges: all edges hidden by means of the context menu are shown again

The window of the graph editor and the main window of the knowledge builder provide even
more menu items which may offer support when modelling the Knowledge Graph.

On the left-hand side of the graph editor window there is the legend of the types of objects.

This legend shows the types of objects for the specific objects on the right-hand side.

By dragging & dropping an entry from the legend into the drawing area you can add or create
a new specific object of the corresponding type.
When right-clicking into the legend area, further types can be added permanently to the
legend so that objects of that type can be added to the graph by means of drag & drop.
Shortcut: You can drag & drop elements from the Knowledge-Builder into the graph editor
when holding down the Ctrl key.

Via the context menu for the legend entries all specific objects can be hidden from the image.
Here you can also "hold" legend entries and add new types of objects to the legend (regard-

Users’Manual 5.7
22/191

less of whether specific objects of this kind are represented in the image).

Max. new nodes: If a node / an object has many adjacent objects, it often doesn’t make
much sense to display all of them when clicking on the drag point. For this reason, the
maximum amount of nodes to be displayed at once can be set.
1. Via the global settings in the tab "Personal", the maximum amount of new nodes can be
set.

2. Within the graph editor, the amount can also be set in the upper right corner.

If the drag point has been clicked to show the adjacent objects a selection list will appear
instead of the objects.

Users’Manual 5.7
23/191

1.1.5.4 Bookmarks and history
The menu graph contains more functions for the graph editor:

Bookmarks: Parts of the Knowledge Graph or "subgraphs" can be saved as bookmarks. The
objects are saved in the same position as they are placed in the graph editor.

When a bookmark is created it may be given a name. All nodes contained in the bookmark
are listed in the description of the bookmark.
Bookmarks, however, are no data backups: objects and relations which were deleted after a
bookmark was saved are also no longer available when the bookmark is shown.

Users’Manual 5.7
24/191

History: using the buttons "reverse navigation" and "restore navigation", elements of a (sec-
tion of) a Knowledge Graphmay be hidden again in the order of sequence in which they were
shown (and vice versa). Furthermore, these buttons reverse the auto layout. The buttons can
be found in the header of the graph editor window or in the menu "graph".

Layout: the layout function enables you to position nodes automatically within the dis-
play area at the currently selected zoom level when many nodes are not allowed to be posi-
tioned manually. When more nodes are displayed they will also be automatically positioned
in the graph via the layout function. The option "auto layout nodes" must be activated for
this purpose (see previous chapter).

Copy into the clipboard: this function creates a screenshot of the current contents of the
graph editor. This image may then be inserted into a drawing or picture processing pro-
gramme, for example.

Users’Manual 5.7
25/191

Print: opens the dialogue window for printing or for generating a pdf file from the displayed
graph.

Cooperative work: this function enables other users to work on the graph mutually and
simultaneously. All changes and selections of a user on the graph (layout, showing/hiding
nodes, etc.) will then be shown to all other users synchronously.

1.2 Definition of schema / model
1.2.1 Define types
The principle of the type hierarchy was already presented in Chapter 1.1.2. If new types are to
be created this is always done as a subtype of a type which already exists. Creating subtypes
can be carried out either via the context menu Create -> Subtype

Users’Manual 5.7
26/191

or in the main window using the tab "Subtypes" above the search field and the tab "new":

Users’Manual 5.7
27/191

Changing the type hierarchy

In order to change the type hierarchy we have the tree of object types in the main window
and the graph editor.

We also can change type assignment when opening the detail editor of the affected type by
choosing the options "Edit" or "Edit unconfigued" in the context menu:

In the hierarchy tree of the detail editor, we will find the option "Removing supertype x from
y" in the context menu.

Users’Manual 5.7
28/191

Using this option we can remove the currently selected object type from its position in the
hierarchy of the object types. In the organizer, we can link types to other types in order to
create multihierarchical schema:

Users’Manual 5.7
29/191

Shortcut: By means of drag & drop we can move an object type to another branch of the
hierarchy. If we hold down the Ctrl key when using the drag & drop function the object type
will not be moved but additionally assigned to another object type.
What still applies is: the hierarchy of the object type allows multiple assignments and inheri-
tance.

Users’Manual 5.7
30/191

Configuring object types with properties

In the simplest case we define relations and attributes with an object type such as "band" or
"person" and thus make them available for the specific objects of this type. (For example the
year and location the band was established, date of birth and gender of people, location and
date of events.)

If the object type for which the properties are defined has more subtypes the principle of
inheritance will take effect: properties are now also available for the specific objects of the
subtypes. Example: as a subtype of an organisation, a band inherits the possibility of having
people as members. As a subtype of "person or band" the band inherits the possibility of
taking part in events:

Users’Manual 5.7
31/191

The editor for the object type "band" with directly defined and inherited relations there.

Users’Manual 5.7
32/191

With a specific object the inherited properties are available without further ado and the dif-
ference goes without notice.

Defining relations

When dealing with relations, the following basic principle governs at i-views: a relation cannot
only be unidirectional. If we know of a relation for the specific person "John Lennon" to be
"is a member of the band The Beatles" it then implies for the Beatles the contents "it has a
member called John Lennon". These two directions cannot be separated. Therefore, i-views
demands from us the types of source and target of the relations when creating new relation
types - in our example that would be person and band as well as differing names: "is member
of" and "has member".

Users’Manual 5.7
33/191

Hence the relation is defined and can now be drawn between objects using drag & drop.

Defining attributes

When defining new attribute types, i-views needs, above all, the technical data type as well
as the name.

Users’Manual 5.7
34/191

The intention of using these data types is not to define everything as character strings. Tech-
nical data types in a defined format later offer special feasibilities of inquiring and compar-
ing. For example, numerical values may be compared to larger or smaller values within the
structured queries and a proximity search can be defined for geographic coordinates, etc.
After having defined the attribute value type, the name of the attribute can be defined:

1.2.2 Relation types and attribute types
Relation types and attribute types (in brief property types) are always properties of specific
objects.

1.2.2.1 Create a new relation type
Via the button "add relation" in the object editor or in the relation type part of the organizer,
the editor starts to create a new relation type.

Editor for creating a new relation type (see also Chapter 2.1 Defining types)
Type of relation: "with own inverse relation" is the default case, for which each relation half

Users’Manual 5.7
35/191

as its own name. "Symmetric" is for relations within the same domain only and offers one
name for both directions.
Name of new relation: Names for relation types may be chosen freely within i-views but
should be selected under the premise of a comprehensible data model. The following con-
vention may be of help for this: the name of the relation is phrased in such a manner that
the structure [name of the source object] [relation name] [name of the target object] results
in a comprehensible sentence:

[John Lennon] [is a member of] [The Beatles]

Furthermore it is helpful when the opposite direction (inverse relation) takes on the word
selection of the main direction: "has a member / is a member of".
Supertype: Specifies the relation supertype within the relation type hierarchy.
Like object types, relation types and attribute types can be structured within in forms of a
hierarchy. The hierarchy of relation types is a simple, but powerful instrument to accomodate
the complexity.
Example: For queries, the relation type "has author" can be used to define who has written
the song text an who has written the composition. At the same time, we have queries for
which we don’t need differentiation and for which all participants need to be requested.
Without relation type hierarchy, all queries would be much more complex because we would
have to insert all the relation types fulfilling this circumstance. Instead, we simply can define
the relations "writes text" and "writed composition" as subtypes of "writes song" (or: "is au-
thor of"). By means of this mechanism, we still can query on the level of "writes song", but
due to the inheritance i-views automatically queries the relation subtypes as well.
The subtype therefore implies the supertype. This principle works for relation types and for
attribute types or object types.
Domain: Here we define by which object types the relation has to be created: one object
type forms the source of the relation and another object type the target. The tareget object
type, in turn, forms the definition area of the inverse relation. To simplify matters, when
creating you may only enter one object type at this stage. Afterwards, further object types
may be defined in the editor for the relation type (see below).
Internal name: If the relation is intended to be referred by a script, the internal name serves
for identification and refrence.
Virtual: If we need single-sided relations, we can define which relation half is the single-
sided one and which relation half is only virtual. The virtual relation half is only rendered
when listing in the relation instances list or can be used for queries. For more information
about single-sided relations, see chapter "Single-sided relations".

1.2.2.2 Create a new attribute type
Via the button "define new attribute" in the object editor the editor starts to create a new
attribute type:

Users’Manual 5.7
36/191

Two-stage dialogue for creating a new attribute type
In the left-hand window the format of the attribute type is defined (date, floating point num-
ber, character string, etc.)
The following technical data types are available:

Type of data What do the values look
like?

Example (music graph)

Attribute abstract attribute, without
an attribute rating

Boolean »yes« or »no« music band still active?
Choice string values which can be

selected from a drop-down
menu

role; design of a music in-
strument (hollowbody, fret-
less, etc.)

Colour value colour selection from a
colour palette

Date date dd.mm.yyyy (in the
German language setting)

publication date of a record-
ing medium

Date and time date and time dd.mm.yyyy
hh:mm:ss

start of an event, e.g. con-
cert

Users’Manual 5.7
37/191

File random external data file
which will be imported into
the Knowledge Graph as a
»blob«

WAV file of a music title

Flexible time month, month + day, year,
time, time stamp

approximate date when a
member joined a band

Float (floating point num-
ber)

numerical value with a ran-
dom number of decimal
places

price of an entrance ticket to
an event

geo position (geographical
position)

geographical coordinates in
WGS84 format

location of an event

Group without attribute rating,
serves as a medium for
meta attributes to be
grouped

Integer numerical value without
decimal places

runtime of a music title in
seconds

Internet shortcut link on a URL website of a band
Interval date interval: interval of

numbers, character string,
time or date

period of time between the
production of an album and
its publication

Password per attribute entity and
password a clearly hashed
value (Chaum-van Heijst-
Pfitzmann) which is only
used to validate the pass-
word

Reference to [...] reference to parts of the
Knowledge Graph configu-
ration: search, diagram of a
data source, scripts and files
- is used for example in the
REST configuration

String (character string) random sequence of al-
phanumeric characters

review text to a recording
medium

Time time hh:mm:ss duration of an event

After selecting and confirming the attribute type it can be further specified with the name of
the attribute in the subsequent dialogue.
Supertype: here it is defined at what level in the hierarchy the attribute type should be
placed.

Users’Manual 5.7
38/191

May have multiple occurences: attributes may occur once or more than once, depending
on the attribute type: a person only has one date of birth but may, for example, have several
academic titles at the same time (e.g. doctor, professor and honorary consul).

1.2.2.3 Edit details
The dialogs for creating new attribute and relation types are limited views of the attribute
and relation type editors. To edit details of relations and attributes, editors must receive and
enhanced scope of functions.
You get to these two editors via the listing of relations and attributes on the “Schema” tab of
the object editor:

Alternatively, you can use the hierarchy tree on the left side of the main window for access.
The hierarchies for relation and attribute types are located underneath the object types. The
editors are started by right-clicking on the relation or attribute to be edited in the context
menu and choosing “Edit” .

Next, we will look at the details of the definition of properties by using the relation type editor
as the example (the attribute type definition is a subset thereof):

Users’Manual 5.7
39/191

Defined for: Here we can subsequently check for which object types the relation can be
created. Relations can be defined between several objects and thus have several sources
and targets.
In this way, we can allow persons and bands to be authors of a song in the schema or as-
signed a location - even if they do not have a super-type in common.
We can use the “Add” button to add additional objects. We can use “Remove” to prevent this
object type and all its objects from entering into this relation.
“Change” makes it possible to replace an object type. Already existing relations are then
deleted by the system. If there are relations to be deleted, a confirmation prompt appears
before the change is made.
Target: Here you can change retrospectively for which types of objects the relation can
be used. To change the target object type you have to switch to the inverse relation type:
The button for changing bears the label of the inverse relation type. After clicking on the
button, the inverse relation appears in the editor and can be edited in the same way as the
previous relation.

Abstract: If we want to define a relation which is only used for grouping but is not supposed
to define concrete properties, we define it as “abstract.”
Example: If the relation “Writes song” is defined as abstract, this means: if we create songs

Users’Manual 5.7
40/191

and their relation to artists and bands, we can now enter specific information (who wrote the
lyrics, who wrote the music). The unspecified relation “Writes song” cannot be created in the
actual data but can only be used for queries.

May have multiple occurrences: One characteristic of relations is whether they may have
several occurrences. For example: the relation “Has place of birth” can only occur once for
each person whereas e.g. the relation “is member of” can occur several times for a person.
Hence, logical matters can be modeled precisely. For example, musicians as persons can
only have one place of birth but (at the same time) can also be members of several bands.
Whether the relation can occur multiple times is specified independently for each direction
of the relation: A person can only have one place of birth but the place can be the place of
birth of several persons.
The option can only be deactivated if the relation does not occur several times in the actual
data set. If it occurs several times, the system cannot decide automatically which of the rela-
tions is to be removed.

Mix-in: Mix-ins are described in the Extension chapter.

Main direction: Every relation has an opposite direction. In the core, the two directions are
equivalent, but there are two places where it makes sense to determine a main direction:
• In the Graph editor: Here the relations always present themselves in the main direction
in relation to the direction of the arrow and labeling; irrespective of the direction in
which they were created.
• For single-sided relations (without inverse relation)

Additional setting options for relations and attributes are located in the “Definition” sub-item
on the “Details” tab. The setting options under Definition are often used and that is why they
are already available on the Overview tab. Under “Definition (advanced)” in contrast, there
are setting options that are not required as frequently.

Counter: If a number is entered in the counter, this is the number with which objects of
this type are counted up. The JavaScript functions getCounter(), increaseCounter() and set-
Counter() can be used to access the counter.
Name attribute for objects: (Note: can only be set on object types, not relation or attribute
types)

Users’Manual 5.7
41/191

Typically many views in i-views only represent an object via its name (e.g. in object lists,
hierarchies, in the Graph editor, the relation target search, etc.). Instead of the name you can
use any other attribute of the objects here with which it can be represented. A prominent
example for products: The article number.
Name attribute for types: This can be used also to select an alternative attribute for a more
descriptive display for types.
Property is iterable:
Selection options: Active / Write only / Inactive.
Default: Active.
Sometimes the maintenance of the index for iterating properties severely affects perfor-
mance. This typically happens with meta properties such as “changed by” or “changed on”
which do not necessarily have to be taken into account all the time. In such cases we rec-
ommend setting the properties to cannot be iterated by using the “Inactive” selection option.
The purpose of “Write only” is to deny read access but still allow write access. This makes it
possible to test for inadvertent side effects.
minOccurs guideline: This reference value relates to the user interface in Knowledge
Builder and as of Version 5.3 it also affects the user interface in the web front-end and
specifies the minimum number of times a property is supposed to occur on an object. If
the number falls below the specified number, the property is displayed in red in the user
interface but the object can continue to exist. An import ignores the reference value.
maxOccurs guideline: As of Version 5.3, this reference value relates to the user interface
in Knowledge Builder and the user interface in the web front-end. It specifies the maximum
number of times the property should occur on an object. If the specified number is reached,
no additional properties can be created. An import ignores the reference value.

1.2.2.4 Single-sided relations
Application of single-sided relations - basic principles
When an object is called up for import purposes or displaying in view configuration, all of
its properties will be loaded (especially when not indexed sufficiently). This in turn means
that besides of the attribute values, all existing relations will be loaded including their target
objects as well, leading to an overhead which slows down performance.

Especially for catalog objects, the loading all properties can lead to long loading duration. A
catalog object is an object which serves as central reference for other objects and therefore
is interrelated with them.
Example: A Knowledge Graph has objects of the type "city" which are connected by relations
to its citizens. When a detailed view of a city has to be loaded for indicating the number of
citizens only (and not their names, addresses and hobbies etc.), single sided relations make
sense for this purpose.
In this case, the single-sided relations direct from the individual satellite objects towards the

Users’Manual 5.7
42/191

catalogue object. This results into the relation "is citizen of" being visible on the citizen side
only, but the relation "has citizen" from the city towards the citizens will be suppressed. Nev-
ertheless, the ’virtual’ relation "has citizen" can be used for structured queries and it can be
found within the schema.
Defining single-sided relations
In order to define a single-sided relation, we must specify in the dialog which relation half
(original or inverse orientation) has to be kept virtual, in other words "invisible". Here fore
we choose the checkbox "virtual" on the affected half. The other relation half automatically
becomes the real relation half which builds up the relationship between start domain and
target domain.

Supplementary declaration of a conventional relation as a single-sided relation
When a preliminary declared conventional relation type is going to be converted into a single-
sided relation type, the instances of the virtual relation half will be deleted. This process can
be inverted when redefining the relation form. Then the particular relation halves are going
to be determined again.
The conversion to single-sided relations will show its effect as follows: For a catalog object,
all the virtual relation halves including their relation targets are not going to be displayed
anymore, but the virtual relation instances are still rendered as an instance in the Knowledge
Graph and therefore can be called up in structured queries.
In the best case, when defining import mappings for large amounts of objects that relate
to a catalog objects, always use the real, single-sided relation type half. This can lead to
performance improvements when importing.

Users’Manual 5.7
43/191

As a result, the checkbox "Single-sided relation" indicates that the respective relation half is
used as a single-sided relation.
Hint: Until i-views 5.3, the checkbox of the Boolean attribute "Single-sided relation" only
served for indication purpose. Since i-views 5.4, a redefinition only can be executed by click-
ing on the checkbox or via the context menu in the detail editor.

Users’Manual 5.7
44/191

Hint: After conversion to single-sided relation, the performance for indicating virtual rela-
tions can be improved by means of indexing.
Supplementary conversion of a single-sided relation into a conventional relation

If we realize afterwards that a relation type actually should be declared as a conventional
relation type, a correction can be made without further consequences. In the detail editor of
the relation type, we therefore click onto the contextmenu and choose Reengineer> Convert
to normal relation or we deselect the checkbox "Single-sided relation".

Users’Manual 5.7
45/191

Immediately, the Knowledge-Builder changes all existing virtual and single-sided relations
into normal relations.
Supplementary swapping of the orientation of a single-sided relation type
The supplementary change of orientation of the single-sided relation type is done analogous
via the "Reengineer" command in the context menu of the detail editor or by swapping the
checkbox selection. In order to do this, we change to the opposite relation type half which
has to be converted from virtual to single-sided and choose Reengineer > Convert to one-
way relation or we tick the checkbox "Single-sided relation".

1.2.3 Model changes
In i-views you can make changes to the runtime of the model:

• implement new types
• make random changes to the type hierarchy (without creating tables and giving any
thought to primary and secondary keys).

The system ensures consistency. When creating objects and properties the opposite direc-
tion of a relation is always included. Attribute values are checked as to whether they match
the defined technical data type (for example, in a date field we cannot enter any random
character string).

Consistency is also important when deleting: dependent elements always have to be deleted
with them so that no remaining data of deleted elements stays in the Knowledge Graph.

• Thus, when an object is deleted all its properties will be deleted along with it. If, for
example, we delete the object "John Lennon" we also delete his date of birth and his
biography text which we can have as a free text attribute for each person, etc. Likewise,
his relation "is member of" to the Beatles and "is together with" to Yoko Ono. The
objects "The Beatles" and "Yoko Ono" will not be deleted; they only lose their link to
John Lennon.
• When deleting a relation the opposite direction is automatically deleted with it.

Since i-views always ensures that the objects and properties are in accordance with the
model, deleting an object type or, where necessary, an operation has far-reaching conse-
quences: when an object type is deleted, all its specific objects are also deleted - analogue to
the relation and attribute types.

In this process, i-views always provides information on the consequences of an operation.
If an object has to be deleted, i-views lists all properties which will thus be removed in the
confirmation dialogue of the delete operation:

Users’Manual 5.7
46/191

i-views controls where, by the change, objects, relations or attributes become lost. The user
is made aware of the consequences of the deletion.
Not only the deletion, but also conversion or change of the hierarchy type may have its con-
sequences. For example, when objects have properties which no longer comply with the
model after a change in type or change in the inheritance.

Users’Manual 5.7
47/191

Let us assume that we delete the relation "is supertype of" between "event" and "concert"
and thus remove the object type "concert" and all its subtypes from the inheritance hierarchy
of event to add them to "work", for example. In this case, i-views draws our attention to
the fact that the "has participants" relations of the specific concerts would be omitted. This
relation is defined in "event" and would thus no longer apply to the concerts.
There are possibilities for preventing the omission of relations as a result of model changes.
If an object type has to move within the type hierarchy, for example, the model of the af-
fected relation has to be adapted prior to this.

For example, if "concert" is to be located under "work" within the hierarchy and no longer un-
der "event". To this end, the relation "has participants" will be assigned to a second source:
that can be either the object type concert itself or the new item "work". The relation will
hence not be lost.

i-views pays particular attention to the type hierarchy. If we delete a type from the middle
of the hierarchy or remove a super/sub relation type, i-views then closes the gap which has
ensued and puts back the types which have lost their supertypes into the type hierarchy to
the extent that they keep its properties as far as possible.

Special functions

Changing type: objects already in the Knowledge Graphmay bemoved to objects of another

Users’Manual 5.7
48/191

type. For example, if the object type "event" differentiates to "sports event" and "concert". If
there are already objects of the type sports event or concert in the Knowledge Graph, they
may be selected from the list in the main window and quite simply moved to a new, more
suitable object type using drag & drop.

Alternatively, we can find more information in the context menu under the item "edit".

Select type: using this operation we can assign a property to an object.

Reselect relation target: in relations this does not only apply to the source, but also the
relation target.

Convert subtypes to specific objects (and vice versa): the border between object types
and specific objects is, in many cases, obvious but not always. Instead of setting up only one
object type called "musical direction" as in the case of our sample project, we could have set
up an entire type hierarchy of musical directions (we decided against this in this Knowledge
Graph because themusical directions classify somany different things such as bands, albums
and songs and therefore they do not provide any good types). It may happen, however, that
we change our minds in the middle of the modelling. For this reason, there is the possibility
of changing subtypes into specific objects and specific objects into subtypes. Any relations
which may already exist will be lost in the process if they do not match the new model.
Converting the relation: source and target of the relation will remain the same, only the
relation type will be converted.

Converting the attribute: source/object will remain the same but it will be assigned to
another attribute type:

Users’Manual 5.7
49/191

When converting the individual relations we are usually quicker when we delete these and
replace them with another one. However, it may happen that meta properties are attached
to the properties which we do not want to lose. On the other hand, the converting opera-
tions are also available for all properties of a type or a selection thereof. A prerequisite is,
of course, that the new relation or attribute type is also defined for the source and target
objects.

If changes are made to the model, consideration should always be given to the fact that
restoring a previous condition may only be carried out by installing a backup. Analogue to
the related databases there is no "reverse" function.

1.2.4 Representation of schema in the graph editor
Until now we have mainly been dealing with linking of specific objects within the graph ed-
itor. Presenting such specific examples, discussing them with others and, where necessary,
editing them is also the main function of the graph editor. We can, however, also present the
model of the Knowledge Graph directly using the graph editor, e.g. the type of hierarchy of a
Knowledge Graph.

Types of objects will then be displayed as nodes with a coloured background and types of
relations as a dotted line:

Users’Manual 5.7
50/191

Relation types in the graph editor

If until now we have been referring to relations in the graph editor, this concerned relation
objects between specific objects of the Knowledge Graph. Moreover, the general types of
relations (hence the diagrams of the relations) may also be presented in the graph editor. A
relation is depicted in the graph editor as two semi-circles which represent the two directions
(main direction and inverse direction). Therefore, between these two nodes there is the rela-
tion "inverse type of relation":

Users’Manual 5.7
51/191

The presentation of a type of relation and the hierarchy within the graph editormay be shown
analogue to the object editor with all supertypes and subtypes:

Attribute typesmay also be depicted in the graph editor - they are shown as triangular nodes.

Users’Manual 5.7
52/191

Analogue to the type of object hierarchy the hierarchy of the relations and attributes within
the graph editor may be changed by deleting and dragging the supertype relation.

1.2.5 Metamodeling and advanced constructs
1.2.5.1 Extensions
As a further means of modelling, i-views offers the possibility of enhancing objects.

For example, if a person performs the role of a guitarist in a band but plays another kind of
instrument in another band. In addition, the person exercises the role of the composer.

The fact that one person can play different roles in a Knowledge Graph may be regulated

Users’Manual 5.7
53/191

via a special form of a object type. This may not contain any objects, but enhance objects
from another object type (e.g. in this case "person"). For this purpose, the object type "role"
is implemented into the Knowledge Graph, for example and the different roles created for
persons as subtypes: guitarist, composer, singer, bassist, etc. In order that these "role object
types" may enhance objects this function will be defined in the editor for the object type by
checking the box "type can extend objects":

Enhancements are displayed in the graph editor as a blue dotted line:

Users’Manual 5.7
54/191

As a result of this enhancement we have achieved several things simultaneously:

• We have formed sub objects for the persons (we can also imagine these as sections or -
with persons - as roles). These sub objects may be viewed and queried individually. They
are not independent, when the person is deleted the enhancement "guitarist" along
with the relations to the bands or titles are gone.
• We have expressed a multi-digit content. We cannot express anything on separate rela-
tions between persons, instruments, title/band - in this case the assignment would no
longer succeed.

Users’Manual 5.7
55/191

For this purpose the relation "plays in the band" for the enhancement "guitarist" has to be
defined. This effect that persons inherit an additional model via the enhancement may be
helpful regardless of multi-digital contents.

From a technical point of view, the enhancement is an independent object which is linked to
the core individual bymeans of the system relation "has enhancement" or inverse "enhanced
individual". Its type (system relation "has a type") forms the enhancement type.

When defining a new enhancement, two object types play a role: in our example we want to
give persons an enhancement and we have to provide this information to your type "person".
The enhancement itself again has an object type (usually even quite a lot of object types); in
our case "guitarist". With the type "guitarist" (and with all others with which we want to en-
hance the persons) his specific objects will be dependent.

When querying enhancements in the structure search we have to traverse individual rela-
tions: From the specific person via the relation "has extension" via the enhancement object
"Guitarist". From there you can reach the band via the relation "plays in band".

Users’Manual 5.7
56/191

Mix-in

The essence of this example with the role "guitarist" is that the relation "plays in a band" is
linked to the enhancement but not with the person. Hence, a consistent assignment is pos-
sible with several instruments and several bands.

If the option mix-in is selected the relation, on the other hand, is created with the core object
(person) itself. The reason for this is that enhancements are sometimes not used to express
more complex contents but to assign an object polyhierarchically to different types. This ob-
ject inherits in this manner relations and attributes of several types.

Users’Manual 5.7
57/191

When we setup an extensive type hierarchy of events, for example, with the subdivision into
large and small events, outdoor and indoor events, sports and cultural events, we can either
characterise all combinations (large outdoor concert, small indoor football tournament, etc.)
or create the different types of events as possible enhancements of the objects of the type
"event". Then we can assign an event via its enhancements as a football tournament and, at
the same time, as an outdoor event as well as a large event. Via the enhancement "football
tournament" the relation "participating team" may then be inherited, via the enhancement
"outdoor event", for example, still the property "floodlight available". When we have placed
these properties in mix-in they may be queried like direct properties in the events.

If a mix-in enhancement is deleted it acts like a "normal" enhancement: there has to be at
least one enhancement available which entails the mix-in property. When the last of these
enhancements is deleted the relation or the attribute in the core object is also deleted.

1.2.5.2 Inferred relations
A special form of the relation is the shortcut relation. Hidden behind this is the possibility to
shorten several relations already available by means of schematically predefined substitue
relations.
In this manner the system can, to a certain extent, draw a direct conclusion from an object A
in the Knowledge Graph which is indirectly connected to an object B via several nodes. This
means that for a semantic element the inferred relation and its targets can be determined in
the graph editor and in structured queries in one step.

For example, a band publishes a recording media in a certain genre of music, ergo this genre
of music can likewise be assigned to this band:

In order to use inferred relations, in the form editor the inferred relation path needs to be
defined via the relations "is author of" and "has genre".

Users’Manual 5.7
58/191

Options for defining the inferred relation path:
• "Transitive": The relation may occur in any number (once to infinite).
• "With all extensions": Extensions will be included. The setting will be defined for the
relation which is defined at the extension. If an inferred relation from the extension
back to the core element needs to be defined, the relation type "Extends instance" must
be used explicitly therefore.

In the queries the shortcut relation can be used like any other relation as well.
In the current version of i-views it is recommended that several nodes and edges be queried
via search modules as a result of the improved overview in the structured queries.

1.2.5.3 Meta properties
Up to now, properties of less complexity in object types for objects were defined. For ex-
ample, users can add or edit contents to the music Knowledge Graph which we are treating
here as an example via a web application. It should, however, be noted which information
was changed from whom and when. To do this, attributes and relations and, in turn, for at-
tributes and relations are required in all combinations.

Attributes to attributes: for example, discussions and reviews are listed in the music Knowl-
edge Graph as text attributes for music albums. If it is to be noted when discussions and
reviews were added or when they were last changed we can define a date attribute which is
assigned to the discussion and review attributes:

Attributes to relations: This date attribute may also be located at a relation between albums
and personal sentiments such as "moods" if the users are given the possibility of tagging:

Users’Manual 5.7
59/191

Relations may be used on attributes and on relations. For example, those users should be
documented who have created or changed an attribute (e.g. review of an album) or a relation
between an album and a mood at certain times:

These examples together with the editing information form a clearly demarcated meta level.
Properties of properties are, however, usable for complex "primary information":

If, for example, the assignment of bands or titles to the genres be weighted, a rating as
"weight" may be given to the relation as an attribute.

An attribute of a relation may also be the sum of a transfer or the duration of participation
or membership.

Relations to relations may also be expressed as "multi-digit contents". For example, the fact
that a band performs at a festival (that is a relation) and in doing so takes a guest musician
with them. He doesn’t always play with the band and hence doesn’t have a direct relation
to it. Likewise, he cannot be generally assigned to the festival but is assigned to the perfor-
mance relation.

Modelling of meta properties may, of course, also be realised by implementing additional
objects. In the last example the fact that the band performed at a festival enabled an object
of the type "performance" to be modelled. A significant difference is that in the meta model
the primary information can simply be separated from the meta level: the graph editor does
not show the meta information until it is requested and in queries, also in the definition of
views the meta information can simply be left out. The second difference lies in the delete
behaviour: objects are viable independently. Properties, even meta properties, are not on
the other hand; when primary objects and their properties are deleted the meta properties
are deleted with them.

Incidentally: properties can not only be defined for specific objects but also for the types
themselves. A typical example of this is an extensive written definition with a object type, e.g.
"what do we understand by a company?" That is why we are always asked whether we want
to create them for concrete objects or subtypes when creating new properties.

Users’Manual 5.7
60/191

1.2.5.4 Multilingualism
The attributes "character string", "data file attribute" and" selection" may be created multi-
lingually. In the case of the character string attribute and data files, several character strings
may then be entered for an attribute:

With data file attributes several images (e.g. with labels in other languages) may be uploaded
analogically. In the case of selection attributes all selection options are deposited in the at-
tribute definition; here it doesn’t matter in which language the selection for the specific object
is made.

All other attributes are depicted in the samemanner in all languages, e.g. Boolean attributes,
integers or URLs.

If the image deviates in other languages attributes adapt their image automatically, depend-
ing on the language: for example, dates according to European spelling day|month|year are
shown in US format month|day|year.

In i-views separate attributes are not simply deposited for values in other languages, instead
they remain as a separate layer for an attribute with language variations. You don’t have to
bother about the management of different languages when developing an application, but
only the desired language for the respective query:

In i-views preferred alternative languages can be defined: if there is no attribute value, e.g.
a descriptive text in the queried language the missing text can be shown in other languages
if they are available. The order of sequence of the alternative languages may also be defined.

Multilingual settings are, for example, used in search.

Users’Manual 5.7
61/191

1.2.6 Indexing
Indexing forms part of the internal data management of databases. Used correctly, the set-
ting of indexes can improve performance significantly.
Background: In i-views, all semantic elements (types or objects) are generally stored in a
cluster with their properties (attributes or relation halves). For certain transactions or uses,
however, it can be better to only load part of the information. Instead of having to load the
entire elements or clusters to read a few properties for queries, a corresponding index is
used to refer exclusively to the required properties. Metaphorically, these indexes are both
signposts and shortcuts to the required partial information.
The requirement for indexing in structured queries or during import mapping becomes ap-
parent through various notes: In import mapping, if an object is not identified using the
primary name, as expected, but through a different attribute, the note appears: “No usable
index for [...].”

Import mapping with message regarding missing index

Structured query with message regarding missing index

Indexing can improve performance in particular when it comes to writing data (= importing).
Indexing is required for:
• Transaction:
Read transactions: Search/structured query; view configuration
Write transactions: Imports (import mapping)
• Checking rights

Depending on the intended use, suitable indexes must be selected for certain attributes or
relations.
The indexes are defined in the Knowledge Builder settings. The assignment of the indexes
can take place either in the settings of the KB or in the Detail editor of a type (Details >
Indexing > Assign index).

Users’Manual 5.7
62/191

1.2.6.1 Manage and apply available indexes
Available indexes (Settings > Index configuration)
All indexes created in the Knowledge Builder can be managed centrally in the settings.

Category “Indexes”
This setting option can be used to manage the index structures. All available index types are
listed under “Available indexes”. Each index type can be used for specific types of attributes
or relations.
If an index is shown in grey, then the index is currently deactivated; if it is highlighted in red,
then the index is currently not synchronous.
There are buttons to generate, delete, configure, assign and synchronize on the right-hand
side.

Index Use
Lucene full text index
(JNI)

Full text query

Metrics Performance improvement in structured queries by taking into
account the number of elements

System System relations (predefined, cannot be changed) This is used for
“extends object” / “has extension” / “is super-type of” / “is subtype
of” relations

topic -> value To list attribute values/relation targets in object lists

Users’Manual 5.7
63/191

topic -> value (domain
segmented)

To list attribute values/relation targets in object lists

value -> topic
topic -> value

For single-sided relations, results in a speed-up for weighted in-
verse single-sided relations

value -> topic Attribute values for an object
value -> topic (unique) Attribute values that may only occur once per attribute type for

an object (write rights check for imports)
value -> topic
(word)[string split-
ting]

CDP-specific: This is only used in i-views content

value -> topic for sub-
ject keys (word)[string
splitting]

CDP-specific: This is only used in i-views content

Full text index for
terms [string splitting]

CDP-specific: This is only used in i-views content

Category “Index for relations"/ “Index for attribute value”
Indexes can be divided up using different aspects. First of all, a distinction can be made
between forward and reverse indexes. In the case of the reverse indexes, it may make sense
to refer to the property from target/value to resolve the metaconditions on the property.
Ultimately, an index can optionally perform a segmentation by each type of source object
in order resolve structured queries that are limited to objects of subordinate types more
efficiently.
Some properties may not require an index depending on the specific application. (They can
then be marked with “Ignore”. They are not examined further in this optimization step.)
• Relations can use a reverse index instead of a forward index on the inverses - and vice-
versa.
• Attributes can also be indexed with modified/standardized values (e.g. full text with
basic word forms). A corresponding operator can then be used for search for these.

Applicable indexes (detailed configuration)
The indexes that can be used for a relation type or attribute type can be assigned using the
detailed configuration.

Users’Manual 5.7
64/191

Assigning indexes in the detailed configuration of type

Attribute types Relation types
topic -> value topic -> value
topic -> value (domain segmented) topic -> value (domain segmented)
value -> property value -> property
value -> topic value -> topic
value -> topic (unique)

1.2.6.2 Create a new index
In the settings of Knowledge Builder, a new index can be created under:
Settings > Index configuration > Indexes > Create new
The following selection is available at the start:

Index Use
Lucene full
text index
(JNI)

Full text query

Pluggable in-
dexer

Combined use of distributor and index modules for adapted indexing;
specific configuration by means of index filters is possible

The following section describes the configuration of the pluggable indexers because these
can be used most flexibly and cover almost all use cases.
Addable index modules

Users’Manual 5.7
65/191

Pluggable indexers enable the administrator to create an indexer from prefabricated mod-
ules in order to achieve the corresponding indexer behavior.
A pluggable indexer consists of distribution levels that are closed by an index level that regu-
lates data storage. Hence, an indexer can index both attributes and relations.
If the indexer is assigned an optional index filter, the indexer behavior can be influenced
further; only suitable property types can then be assigned to the indexer.
Since properties include attributes and relations, the following section refers to an attribute
value or relation target as a value of the property.

Pluggable indexer

Users’Manual 5.7
66/191

T = Topic = object/element/instance
P = Property = attribute/relation
"V" = Value = attribute value/relation target

Distributor/index Use
Distributor by domain
(after that, all other dis-
tributors can be selected)

To search for a subset of object types that jointly use a prop-
erty

Distributor for each
property type
(index can be selected
afterwards:)

Distinction between attribute and relation

Index property on
value/target

Attribute -> Attribute value,
Relation -> Target object/target type
To find relation targets in structured queries with a restriction
on the meta property

Index object on
value/target
= topic -> value
= topic -> value (domain
segmented)

Object -> Attribute,
Abject -> Target object of relation
To list attribute values/relation targets in object lists

Index value/target on
property
= value -> property

Attribute value -> attribute
Meta-relation target -> Attribute
Relation target -> relation
Meta-attribute (value) -> Relation
For single-sided relations, results in a speed-up for weighted
inverse one-way relations

Users’Manual 5.7
67/191

Index value/target on
property (uniqueness
check)

Attribute value -> Attribute
To search for meta properties

Index value to seman-
tic element
= value -> topic

Attribute value -> Attribute
Relation target -> Relation
To support structured queries on objects with specified val-
ues/targets on attributes/relations

Index value to seman-
tic element
(uniqueness check)
= value -> topic (unique)

Attribute value -> Object (e.g.: email address)

Distributor for each
property value

Together with “Index property”:
For compact storage of many identical values/targets; same
response as for “Index value/target on property”

Distributor for each ob-
ject

For single-sided inverse relations

Index redundant storage
for relation properties

(Might not be used in combination with pluggable indexes)
Faster display of meta properties on relations when using
symmetric relational properties

Filter
Filter type Use
Latitude For indexing an attribute type of the value type “geographical posi-

tion”
Longitude For indexing an attribute type of the value type “geographical posi-

tion”
Interval start value For indexing an attribute type of the value type “interval”
Interval stop value For indexing an attribute type of the value type “interval”
String filtering .
Strings to words fil-
ter

For splitting the input string into single words

1.2.6.3 Details about indexer blocks
A distinction is made between the breakdown indexer modules and the indexing indexer
modules. A breakdown indexer module partitions the index according to different aspects.

Users’Manual 5.7
68/191

Following that, there is either another breakdown or an indexing index module that stores
the index entries.

The figure shows an example of how a stackable indexer consisting of three modules (with-
out value filter) groups the index entries. This index can now efficiently provide answers to
questions such as
• Which animals start with S
• Which plants either other organisms
• Which animals eat zebras (T03)
• etc.

Questions such as
• Which organisms start with S
• Which organisms eat flies (T05)

could also be answered. To do so, an indexer configuration without “Distributor by domain”
would suffice (and might be more efficient depending on the data situation).

1.2.6.3.1 Distributors
• Distributor by property type
The most important module, without which most indexing modules cannot be added.
It generally appears in first place and partitions the entries according to their property
type.

• Distributor by domain
Enables partitioning according to the relevant terms of the property-carrying objects.

Users’Manual 5.7
69/191

The module is only useful for properties of individuals.
If a property can occur in multiple object types and a search only searches for a subset
of these object types, this module accelerates the search through corresponding index
access.

• Distributor by semantic element
This module can be used for indexing to summarize the relation targets on the source
object. As the previous module, it is used for mapping older indexers and its K-Infinity
3.1 only makes sense for single-sided inverse relations.

• Distributor by property value
Used to partition according to relation target or attribute value. In this case, only the
property can still be indexed (see Index property).

1.2.6.3.2 Indices
• Index value/target to object
This index module is used to store an attribute value on an object or a relation target
on the source of a relation in the index. This type of indexing makes sense if expert
queries for objects with specified values on indexed attributes (e.g. with specified target
on indexed relations) are supposed to be supported.

• Index object to value/target
The index module indexes in the exact opposite way as the “Index value to semantic el-
ement” and, for attributes, can be used to determine the column values of the indexed
attributes for object lists. For relations, it can be used in the same way as the “Index
value to semantic element” if either the inverse relation is indexed or the source object
is already more restricted by the search than the target object.
If you want to support expert queries with the indexed relation in both directions
(source-target and target-source), the relation can be indexed either with this value and
the “Index value to semantic element” or the relation and its inverse relation can both
be indexed with one of the two index types. Here, it can make a difference if the in-
dex module is combined with a “Distributor by domain” because use of this distributor
module for an index on the inverse relation can be used for partitioning by means of
the target domain.

• Index value/target to property
This index module is used to store values on the attribute or target on a relation in the
index. This type of indexing makes sense if searches for additional meta properties are
supposed to be supported for the indexed attributes. To ensure this index can also be
used in a search for the objects of the property (analogous to “Index value to semantic
element”), the respective property must remain set to “Active” under “Property can be

Users’Manual 5.7
70/191

iterated” in the corresponding term editor.

• Index property to value/target
This index module supports expert queries to search for targets of the relations. To do
so, the meta properties of the relation are used for a highly restricted process. Simple
source-target conditions are not, however, supported.

• Index property
Together with the distributor for each property value, the same behavior can be achieved
as for an index value / target to property. If there are a great many identical values or
targets, this makes it possible to achieve more compact storage; otherwise, this combi-
nation has no advantages.

• Index property value
This index only stores the attribute values or relation targets. Using it makes sense if a
“Distributor for each object” is used upstream and few objects havemany values/targets.

• Index redundant storage for relation properties
This module can only be used by itself and is used to display the meta properties on
relations more quickly if symmetric relational properties are used. No index structure is
created at the technical level but the indexer can be addressed via the same configura-
tion and programming interfaces.

1.2.6.3.3 Uniqueness check
The Index value to semantic element and Index value to property modules can be supple-
mented with a uniqueness check. The modules supplemented in this way are usually used
for the consistency check of unique identifiers. They are available in the selection list for the
addable index modules (e.g. Index value to semantic element (uniqueness check)).
If a new value is to be written and the same value is found in the index, this new value
cannot be adopted. Values are recognized as identical if they are also grouped identically
by all distributors of the index. If, for example, you want to perform a uniqueness check by
domain only (this, for example, makes it possible for “modern” to coexist as an individual of
verb and as an individual of adjective), the index must contain a Distributor by domain.
If a value filter is also configured, the uniqueness check is executed on the filtered values.
This makes it possible, for example, to identify “arm” and “Arm” as identical.
Note: a value filter that splits strings (for full text) can be combined with the uniqueness
check, but this is not usually sensible, because even a partial string can lead to duplicates
after splitting, for example “The house” and “house and home.”
The Index value to semantic element cannot recognize duplicate values of this property as
duplicates in an object if properties occur multiple times. It is therefore possible for two iden-
tical attributes with identical values to exist in the same object, but not in different objects. If
you want to prevent this, you must deactivate multiple occurrences in the attribute term or
instead use an Index value/target to property for the uniqueness check.

Users’Manual 5.7
71/191

1.2.6.4 Details about value filter
1.2.6.4.1 Value decomposition
No atomic attribute value can be indexed for geocoordinates and interval attributes. Instead,
longitude and latitude or interval start value and interval stop value are used to index one
component of the value. For complete indexing, a corresponding indexer for the other com-
ponent of the value must be configured respectively.

1.2.6.4.2 String manipulations

Full text filters for strings can be configured in the Admin tool. These can be used to configure
which manipulation is possible on the strings, and how the strings should be split into indi-
vidual words. Additional operators are then offered in expert queries, to which the respective
filter label has been added, to allow a specific query to be executed using this filter.
Strings can be indexed in manipulated form by means of “string filtering,” and when a query
is executed, this results in all attribute values being interpreted as hits which the filter maps
to the same string as the search input.
By means of “string splitting,” several (manipulated) sub-strings (tokens) from a text can be
indexed. The related index then allows expert queries that execute a search within the string
by means of the operators “Contains words” and “Contains phrase.”

1.2.6.5 Metrics
An attribute “Average number (calculated)” can be created on all property types. The value
of the attribute specifies how many values of the corresponding property an object from the
property domain has on average.
This information enables structured queries to better decide how they determine their result
set. In addition, you can create an attribute “Average number (manual)” whose value over-
writes this value. (This makes sense if the domain is abstract but the property in enquiries is
supposed to be used only when it actually occurs.)

1.3 Searches/Queries
Querying of the Knowledge Graph has various subtasks for which we can configure different
search modules: often we would like to process the user’s entry in a search box (charac-
ter strings). Usually we would like to pursue the links for the queries within the Knowledge
Graph.

• Structured queries
• Simple/direct queries (simple search, full text search, trigram search, regular expres-
sions, parameterised hit quality)
• Search pipeline

Users’Manual 5.7
72/191

1.3.1 Structured queries
Using structured queries you can search for objects which fulfill certain conditions. A simple
example for a structured query is as follows: all persons who master a certain instrument
should be filtered.

At first there is the type condition: objects of the type person are searched for. The second con-
dition: the persons have to master an instrument. Third condition: this instrument has to be the
violin.
In the structured query the relation "plays instrument", the type of the target of the relation
and the value of the target "violin" form three different conditions and thus also three search
modes. The third condition that the instrument has to be a violin may also optionally be
omitted. In the hit list you would then find all persons who play any random instrument.

Often conditions (in this case the instrument) should not be determined previously but be ap-
proved completely. Depending on the situation, an instrument may be given as a parameter
in the application:

Users’Manual 5.7
73/191

The conditions may thereby be randomly complex and the Knowledge Graph traversed as far
as possible:

Slightly more complex example: persons or bands who deal with a certain issue in their songs (to
be more exact in at least one). In this case you do not search for the name but the ID of the issue
as the parameter - typical for searches, for example, which are queried via a REST service from the
application [Figure - "ID" instead of "name"] or by a script.

The type hierarchies are automatically included in the structured queries: The type condi-
tion "Opus" in the search box above includes its subtypes albums and songs. Even the rela-
tion hierarchy is included: if there is a differentiation below "is author of" (e.g. "writes text"
or "writes music") the two sub-relations will be included in the search. The same applies for
the attribute type hierarchy.

Interaction

If a new structured query is created, the topmost of all types is entered at first per default.
In order to limit the query even more you can simply overwrite the name or select "Choose
type" by clicking on the icon.

Users’Manual 5.7
74/191

The button allows you to addmore conditions to the structured query. Deleting conditions
takes place at the beginning of each line where the type condition is listed (relation, attribute,
target, etc.).
Shortcut: Alternatively, conditions can be removed by using the shortcut Ctrl + Click.

When you click on the button the following menu will appear which may vary slightly
depending on the context.

From all possible conditions, focus has, until now, been on the very first item in the menu. A
complete explanation of all conditions and options of the structured queries can be found in
the next chapters.

1.3.1.1 Use of structured queries
One of themain purposes of structured queries is to provide information on a certain context
in applications. The structured query from the last section, for example, can enable end
users in a music portal to generate a list of all artists or bands who cover subjects such as
love, drugs, violence etc. in their songs.
To do so, the structured query is usually integrated into a REST service via the query s reg-
istration key. We include the subject in which the user is interested as a parameter in the
query with the user s ID.
Example scenario: A user enters a search string to search for their topic. Hence, there is
no ID but only a string that is to be used to identify the topic. However, the query result
is supposed to show immediately which bands have written songs on the subject. For this
purpose, a structured query can be integrated into a search pipeline as a component - after
the query that processes the search string.

Users’Manual 5.7
75/191

One of the reasons why structured queries are such a central tool for i-views is that the
conditions for rights and triggers are defined with structured queries. Let s assume the
only people allowed to leave comments in a music portal are artists and bands. In the rights
system, you can thus specify that only artists and bands that have written at least one song
on a topic may leave comments on this topic. Structured queries can also be used in exports
to determine which objects are to be exported.
All these uses have one thing in common: we are only interested in qualitative, not weighted
statements. This is the domain of structured queries in contrast to search pipelines.
Last but not least, structured queries are also important tools for us as knowledge engineers.
We can use them to get an overview of the Knowledge Graph and compile reports and to-do
lists. Here are some examples of questions that can be answered using structured queries:
• Which topic is featured by many artists/bands?
• Do specific topics have to be removed because too many relations have amassed or
conversely should rarely used topics be merged or closed?

For ease of use, it makes sense to be able to organize structured queries in folders.
Implement

The structured queries are implemented in the organizing folder tab or on the results tab by
means of the button "New query":

The search results can then be further processed (e.g. copied into a new folder) but they are
not kept there permanently.

The path which the structured query has taken may only be viewed in the graph editor to
backtrack it. To this end, one or more hits are selected and displayed using the button graph.

A structured query may be copied in order to create different versions, for example. Likewise
there is the possibility of saving them in XML format, regardless of the Knowledge Graph.
The structured query may therefore be imported into another Knowledge Graph. However,

Users’Manual 5.7
76/191

this is limited to versions of the same Knowledge Graph, e.g. to backup copies, because the
structured query references types of objects, relations and attributes via their internal IDs.

1.3.1.2 Structure of structured queries
Very indirect conditions can be expressed within structured queries: you may randomly tra-
verse between the elements throughout the structure of the Knowledge Graph. Artists and
bands may be found who wrote songs on certain topics but which we cannot name specifi-
cally using their titles.

1.3.1.2.1 Serveral conditions
Condition chains may either be randomly deep or several parallel conditions may be ex-
pressed: additional conditions are added to any random condition element as a further
branch:

Several conditions: English bands with songs on a certain subject

1.3.1.2.2 Alternative Conditions
In the example mentioned above only artists or bands can be found who created songs on
a defined subject and who come from England. If, instead, we want to find all artists and
bands which fulfil one of the two conditions they will be expressed as ’alternative’. By clicking
the symbol of the condition in the form of the relation "is the author of" you can select an
alternative from the menu:

Alternative conditions - the band either has to be English or have songs on a certain subject
If there are further conditions outside the alternative bracket there are objects in the hit list
which fulfil one of the alternatives and all other conditions.

Users’Manual 5.7
77/191

1.3.1.2.3 Transitivity/Repetitions
Let’s assume the bands are assigned to either cities or countries within the Knowledge Graph.
Of these, in turn, it is known which cities are in which countries. In order to document these
contents in the search it was possible to very simply expand the condition string: we were
able, for example, to search for bands which are assigned to a city which, on the other hand
is in England. However, in this manner those bands will not be found which are directly
assigned to England. In order to avoid this we can state in the relation "is located in" that it is
optional and therefore does not have to be available.
Simultaneously, we can also include hierarchies which are several levels deep using the func-
tion "Repetitions". For example, is known from the band ZZ Top that they come from the city
of Houston which is in Texas. In order to also retain the band as a result when bands from
the USA are queried we can state in the relation "is located in" that this relation has to be
followed up until repetitions are reached:

1.3.1.2.4 Negated conditions
Conditions can likewise be purposefully negated. For example, if punk bands are searched
for, which do not come from Great Britain. To this end, the negative condition is setup as a
so-called "Utility query".

The utility query delivers bands from Great Britain - from the main search a reference can be
established and thereby noted that the search results are not at all allowed to comply with the
criteria of the utility query - in this manner we remove the results of the utility query from those of
the main query and only obtain bands which do not come from England.

Users’Manual 5.7
78/191

Interaction takes place as follows: the utility query is compiled in the type condition and can,
after conclusion of the main search above, be linked with the menu item "reference". At this
stage you can then select which type the reference should be (in this case negative).

1.3.1.2.5 Corresponds to condition
The reference allows references to be made to other conditions of the same query within a
structured query:

Here the last condition references the first one, i.e. the band who writes the cover version also
has to be the author of the original. Without a reference the search would read as follows: bands
which have written songs which cover other songs which were written by any (random) bands.
Incidentally, the result is, for example, the band "Radiohead" (they covered their own song "Like
Spinning Plates").

1.3.1.2.6 Other options in building the structured queries
Structured query macros: Other structured queries but also other searches can be inte-
grated into structured queries as macros. In doing so, there is the possibility of outsourc-
ing repeating, partial queries into your own macros and thus adapting the behaviour at a
central location when changing the model. A macro can be integrated into each condition
line.
An example from our music graph: For all kinds of opus a band can create, albums or songs
within an album or songs themselves are taken into account. We need these conditions in
forms of partial queries more frequently, for example in a structured query which returns
the bands to a certain mood. We start this query with a type condition - we are looking for
bands - and integrate the pre-defined module as a condition for these bands:

Users’Manual 5.7
79/191

The objects which return those which are integrated into the structured query as macros
have, of course, to match the condition with which they are linked from the point of view of
their type.
Note: With the aid of the identifier function, the query (from the "invoking" query) can still
be continued with additional conditions.
In our case the albums and songs from where the macro query originates are defined by
the invoking query: Namely albums and songs with the mood "aggressive". Integrating the
search macro into the structured query is carried out through the menu "Query structure".
Under structured query macro (registered) there is a selection list with all the registeredmacros.
The advantage is that the macro can be reused for another structured queries.
Caution: As soon as the macro is deregistered, it is deleted and not available for other
queries anymore.

It is also possible to use local macros for structured queries. In this case, the macro doesn’t
get a registry key and is only accessible for and within the respective structured query.

Simple search: Using the search mode "simple search", the results of a simple search or a
search pipeline may serve as input for a structured query. Each respective simple search can
be selected by means of the selection symbol. The input box contains the search entry for
the simple search. Further conditions can enable a simple search to be filtered further, for
example.

Cardinality condition: A search for attributes or relations without its own conditions may
be carried out with a cardinality operator (characterised by a hash tag #). You may use the
cardinality greater than or equal to, less than or equal to and equal. The normal equal oper-
ator of the relation or attribute condition corresponds to greater than or equal to 1.

We have thus covered everything we can find within the menu "Query structure":

Users’Manual 5.7
80/191

1.3.1.3 Details of the conditions
The type condition

The beginning of the structured query determines which objects should appear as the re-
sults. To do so, click on the type icon for the first condition and select "Choose type" in the
menu, the input mask then starts in which the name of the object can be entered.

Alternatively, you can simply overwrite the text behind the type icon with the name of the
object.

In the second step the relation condition is added. For example, a search is made for the
place of origin of a band and "has place" is set as a relation condition. The target type of
the relation is added automatically which, however, can also be changed (if, for example, the
"has location" relation for countries, cities and regions applies but we only wish to have the
cities).

There are further functions available for a type condition. In the item for this there is the
item "Schema" in the general condition menu which we can reach via the button :

Users’Manual 5.7
81/191

Several types of conditions are defined consecutively are interpreted in terms of an "or" logic
in the query. For example, we search for works or events on a particular style of music as
follows:

We can just search for types of objects instead of specific objects or both at the same time
by checking the boxes "Subtypes" and "Instances" in the menu "Schema".

This is what the condition looks like when a search is made for both specific opus as well as
subtypes of opus (albums and songs).
Without inheritance: normally, the inheritance starts automatically with all types of condi-
tions of the structured query. If a search is made for events in which bands play a certain
style of music, all subtypes of events are then incorporated into the search and then we are
provided with indoor concerts, club concerts, festivals, etc. In the vast majority of cases this is
exactly what is desired. For exceptions there is the possibility of switching off the inheritance
and restrict the search to direct objects of the type event, i.e. by excluding the subtypes of
objects.
Operators for the comparison of attribute values

Attributes may also play a role as conditions for structured queries. For example, if it does
not suffice to only identify objects which show an exact predefined value or the value entered
as a parameter. For instance, bands which were founded after 2005 or songs which are more
or less 3 minutes long or songs which contain the word "planet" in their title. These require
comparison operators. The type of comparison operators which i-views offers us depends
on the technical data type of the attribute:

Users’Manual 5.7
82/191

Comparison operators for dates and quantities
The comparison operator Exactly equal constitutes a special case: the index filter is switched
off and a search can be made after the special character * which is normally used as a
wildcard.

The comparison operator Between requires spelling of the parameter value with a hyphen,
e.g. "10.1.2005 - 20.1.2005" (interval).

The comparison operator Distance requires spelling of the parameter value with a tilde, e.g.
"15.1.2005 ∼ 5" - i.e. on 15.1.2005 plus/minus 5 days.

Comparison operators for character strings

Users’Manual 5.7
83/191

Comparison operators for intervals

Operator overview

Operator At-
tribute
value
types

Description Example

Distance Date,
Geo,
Fig-
ure

Identifies values whose distance to the
searched value equal to the maximum of
the given distance value (date: number
of days, geo: distance in meter)

Search value
’2019/10/01’ with
distance 30 will
return the result
’2019/10/15’, but not
’2019/11/01’

Between Inter-
val

Identifies intervals which completely
comprise the searched value

Searched value ’1 - 5’
returns ’1 - 3, but not
’3 - 6’

Contains
phrase

Char-
acter
string
with
full
text
index

Identifies character strings which contain
the searched terms in forms of a subset.

Search term ’Farmer
George’ finds
’Farmer George
Green’, but not
’George Farmer’

Contains
character
string (strings
to word filter)

Char-
acter
string
with
full
text
index

Identifies character strings which contain
all words of the searched term in an ar-
bitrary order

Search term ’Farmer
George’ finds
’Farmer George
Green’ and ’George
Farmer’, but not
’George Grey’

Users’Manual 5.7
84/191

Contains
character
string (reg-
ular expres-
sion)(strings
to word filter)

Char-
acter
string
with
full
text
index

Indentifies character strings of which at
least on word matches the search terms
derived from the regular expression.

Search term
’Ba[yi]e?r’ finds
’Silke Bayer’ and
’Emil Bair’, but not
’Bauer’

Exactly equal Char-
acter
String

Identifies character strings which are
identical with the search term without
using wildcard characters.

Search term ’Star*’
finds ’Star*’, but not
’Star’ or ’Start’

Equal Any
at-
tribute
value
typ

Identigfies values that are equal to the
searched value.
In case of character strings, wildcard
characters ’*’ (arbitrary strings) and ’?’
(one arbitrary character) are supported.

Search term ’Star*’
finds ’Star’ and ’Start’

Greater than All at-
tributes
with
as-
sortable
val-
ues

Identifies values (and hence the ele-
ments carrying the attribute) which are
greater than the searched values.

Greater/Equal All at-
tributes
with
as-
sortable
val-
ues

Identifies values greater than or equal to
the searched value.

Less than All at-
tributes
with
as-
sortable
val-
ues

Identifies values less than the searched
term.

Less/Equal All at-
tributes
with
as-
sortable
val-
ues

Indentifies values less than or equal to
the searched value.

before now
(past)

Date Identifies date values that are situated in
the past.

Users’Manual 5.7
85/191

after now (fu-
ture)

Date Identifies date values that are situatued
in the future.

Regular ex-
pression

Char-
acter
string

Identifies character strings which match
the search terms derived from the regu-
lar expression.

’\d+\s\w+’ finds
’64293 Darmstadt’

Covered by Inter-
val

Covers Inter-
val

Identifies intervals which comprise a
common, non-empty partial interval with
the searched value.

’2 - 4’ finds ’1 - 3’ and
’3 - 6’, but not ’4 - 5’

greater over-
laps

Inter-
val

Identifies intervals which share a com-
mon, non-empty partial interval, con-
taining the lower limit of the search value
interval.

’2 - 4’ finds ’3 - 6’, but
not ’1 - 3’

less overlaps Inter-
val

Identifies intervals which share a com-
mon, non-empty partial interval, con-
taining the upper limit of the search
value interval.

’2 - 4’ finds ’1 - 3’, but
not ’3 - 6’

not equal Any
at-
tribute
value
type

Identifies values which are not equal to
the searched value. In case of character
strings, wildcard characters ’*’ (arbitrary
strings) and ’?’ (one arbitrary character)
are supported.

Comparative value results from the script: attribute value conditions may be removed
from partial searches and replaced by a script and attribute condition. The results of the
script are then used as a comparative value for the attribute value condition, e.g. if the
comparison operators do not suffice for a specific query.

Identifying objects

The structured query provides several options for identifying objects within the Knowledge
Graph. To simplify matters, the previous examples often defined the objects. This type of
manual determination may, in practice, be of help in testing structured queries or determin-
ing a (replaceable) default for a parameter entry.

At this point we have already become familiar with the combination with the name attribute
which can, of course, be any random attribute. In the menu item "Identify" we will find some
more options for defining starting points for the structured query:

Users’Manual 5.7
86/191

Access right parameter: the results of the query may be made dependent on the appli-
cation context. This particularly applies in connection with the configuration of rights and
triggers when, generally speaking, only "user" is usable.

Script: the objects to be entered at this point are defined by the results of the script.

Semantic element with ID: you may also determine an object via its internal ID. This condi-
tion is normally only used in connection with parameters and the use of the REST interface.

In folder: using the search mode "in folder" the contents of a collection of semantic objects
can be entered into a structured query as input. The selection symbol will enable you to
select a folder within the work folder hierarchy. The objects of a collection are filtered with
respect to all other conditions (including conditions for terms).

1.3.1.4 Parameter conditions
Parameters
In structured queries, input can be passed on by means of a parameter. This allows handing
over query input within JavaScript code in forms of:

$k.Registry.query(’<registryKeyOfQuery>’).findElements({<parameterNameInQuery>: <input>})

The parametrized input can be in forms of:
• semantic element

• attribute value

Users’Manual 5.7
87/191

• element id

There are two possibilities to test structured queries using parameters:
1. Using the test environment of the structured query
2. Invoking the structured query by script (executing or debugging)

In general, there are four conditions a parameter can have:
• Parameter is set
• Parameter is not set
• Parameter is deactivated
• (Parameter contains empty string)

Optional parameters
The structured query has a feature that allows using optional parameters: for a certain
branch of the query, the context menu offers the condition:
Until 5.4: "Disable condition when no parameters set".

Users’Manual 5.7
88/191

Since 5.4: "Mandatory parameter":

If the optional parameter condition has been set, it has the following effect: From this point
on, the rest of the branch (to the right) will not be encountered as condition for the query
result when the respective parameter has been deactivated.
If several parameter conditions have been set within one branch, the AND logic applies:

If all mandatory parameters are deactivated, the subsequent query branch will be left out
completely when computing the query result, else the parameters which are set are will be
used.
Note: When the parameter is not set, the test environment will nevertheless throw an error
despite the optional parameter condition. If testing of optional parameters is needed, the
parameter needs to be disabled in order to test an unset parameter condition.

Important rules about setting parameters

Pa-
ram-
e-
ter
con-
di-
tion

Setting
in struc-
tured
query

Setting in JavaScript Result

Pa-
ram-
eter
is
set

Parame-
ter value
has been
entered

Variable containing
parameter value is
defined

Parameter condition is encountered in query
result

Users’Manual 5.7
89/191

Pa-
ram-
eter
is
not
set

No pa-
rameter
value
has been
entered
(just ex-
ecuting
query)

Handing over no pa-
rameter
Using
findElements()
or
findHits()

without arguments or
setting parameter to
undefined.

Error: "Parameter xy is missing"

Pa-
ram-
eter
is
dis-
abled

Clicking
on x
besides
parameter

Setting parameter to
null. • With conventional parameter: as if the

parameter requirement would not ex-
ist within the structured query
• With optional or mandatory parameter:
the branch from the optional condition
until end of query branch will be ig-
nored

Pa-
ram-
eter
con-
tains
empty
string

Entering
” or "",
rejecting
search
dialog if
occurring

Variable for param-
eter set to empty
string ” or ""

Query branch will return no result; if no alter-
natives exist, the whole query might return no
results

Caution: Risk of search results containing false positives.
For predictability and reliability of query results in scripts, make sure to avoid parameter
values from being null inadvertently, since no errors are thrown system wise. Use control
structures to catch unattended conditions of parameter input.
When an optional parameter is passed on to the structured query by means of a script in
a search view or a search result view, the value type of the parameter also needs to be set
to "optional". If the value type is set to "obligatory", the structured query will not deliver
any search result when the script sets the parameter value to "null" (with the intention to
deactivate the optional parameter).

1.3.1.5 Comments in structured queries
Adding comments
Every condition in a structured query can be commented. For adding a comment, choose
the option "add comment" in the context menu. At the condition in the structured query, an
existing comment causes a blue indicator flag which shows up a text in case of mouseover.

Users’Manual 5.7
90/191

By means of the dialog "Edit comment", the corresponding comment can be changed or
removed:

The indicator flag for comments is not shown when the condition has a warning or a fault. In
this case you only can see the yellow warning indicator or the red fault indicator. Additionally,
all warnings, faults or comments will be listed in their order on the right side below the
parameters editor.

Warnings and cautions can be suppressed in the indicator indication if you want to ignore
them at this point (of course, this is not recommended). To do so, click on the indicator
symbol in the listed view or choose the function "Suppress warnings" in the context menu of
the condition. The indication can be reactivated on the same way or by choosing the context
function "Show all warnings" of the root finder.

Users’Manual 5.7
91/191

1.3.2 Simple Search / Fulltext search
Processing the search queries of users may be carried out with or without interaction (e.g.
with type-ahead suggestions). The starting point is, in any case, the character string en-
tered. In configuring the simple search we can now define with which objects and in which
attributes we search according to the user input and how far we differ from the character
string entered. Here is an example:

How do we have to design and organise the search in order to receive the below feedback on
objects from the entry "white"? In all cases we will have had to configure the query to show
that we only want to have persons and bands as the results. How is it, however, if there are
any deviations from the user input?
• When is the (completely unknown) Chinese experimental band called "WHITE" a hit? If
we state that upper case and lower case doesn’t matter
• When will we receive "Whitesnake" as a hit? If we understand the entry to be a substring
and attach a wildcard
• When "Barry Eugene Carter"? If we not only search through the object names but in-
clude other attributes as well - his stage name is namely "Barry White".

These options can be found again in the search configuration as follows:

Users’Manual 5.7
92/191

Configuration of the simple search with (1) details as to which types of objects are to be browsed
through, (2) in which attributes the search has to be made, (3) upper case and lower case and (4)
placeholders.

1.3.2.1 Simple search - details of the options
Placeholder/wildcard

The entry is often incomplete or we want to retrieve the entry in longer attribute boxes. To
do this, we can use placeholders in the simple search. The following settings for placeholders

Users’Manual 5.7
93/191

can be found in simple search:

• Placeholder behind (prefix) finds the [White Lies] for the entry "white"
• Placeholder in front (suffix) finds [Jack White]
• Placeholder behind and in front (substring) finds [The White Stripes]
• Caution! Placeholder in front is slow.

The option "Always wildcards" works as if we had actually attached an asterisk in front and/or
behind. Behind automatic wildcards there is an escalation strategy: in the case of automatic
placeholders, a search is made first with the exact user entry. If this does not deliver any re-
sults a search will be made with a placeholders, depending on which placeholders have been
set. With the option prefix or substring there is once again a chronological order: in this case
you look for the prefix first (by attaching a wildcard) and, if you still can’t find anything, you
make a search for a substring (by means of a prefix and attaching a wildcard).

If you are allowed to attach placeholders in your search you can state in the box minimal
number of characters how many characters the search entry must show to actually add the
placeholders. By entering 0 this condition is deactivated. This is particularly important if we
set up a type ahead search.

With the weighting factor for wildcards you can adapt the hit quality to the extent that the
use of placeholders will result in a lower quality. In this manner we can, if we want to give
the hits a ranking, express the uncertainty contained in the placeholders with a lower ranking.

If the option "No wildcards" is selected the search entry will not be changed. The individual
placeholder settings will then not be available.

The user can, of course, him/herself use placeholders in the search entry and these can be
included in the search.

Apply query syntax: when the box for the option "Apply query syntax" has been checked a
simplified form of the analysis of the search input is used in which, for example, the words
"and" and "or" and "not" no longer have a steering effect. Nevertheless, in order to be able to
define how the hits for the tokens should be compiled, the default operator can be switched
to "#and" or "#or". What applies to all linking operators is the fact that they do not refer to
values of individual attributes, but to the result objects (depending on whether "hits only for
attributes" has been set). A hit for online AND system thus delivers semantic objects which
have a matching attribute for both online and the system (which is not necessarily the same).

Users’Manual 5.7
94/191

Filtering: simple searches, full-text searches and also some of the specialised searches may
be filtered according to the types of objects. In the example described in the last paragraph
we made sure that the search results only included persons and bands. Attributes which do
not match a possible filtering are depicted in red bold print within the search configuration
dialogue. In our case this could be an attribute "review", for example, which is only defined
for albums.

Translated attributes: in the case of translated attributes we can neither select a transla-
tion, nor have the language dynamically defined. Search for multilingual attributes, then in
the active language or in all languages, depending on whether the option "in all languages"
is checked.

Query output: a maximum query output may be defined by entering the maximum number
in the "results" box. This checkbox will then limit the query output and the mechanism can
be activated or deactivated. By entering the number in the output the checkbox will auto-
matically be activated. Caution: if the number is exceeded no output will be shown!

Server-based search: generally speaking, each search can also be carried out as a server-
based search. The prerequisite for this is that an associated job client is running. This option
can be used when it can foreseen that very many users will make search queries. By out-
sourcing certain searches to external servers, the i-views server will be disburdened.

1.3.2.2 Multi word search inputs
In our examples for queries the users have, until now, only entered one search term. How-
ever, what would happen if the user entered "Abba Reunion News", for example, and thus
would like to find a news article which is categorised by the keywords "Abba" and "reunion"?
We have to disassemble this entry because none of our objects would match the entire string
or at least not the article being searched for:

Users’Manual 5.7
95/191

Our examples so far do not, however, fall short only due tomulti word search inputs. We also
often have search situations in which it does not make sense to regard the names or other
character strings from the Knowledge Graph, with which we compare the input, as blocks ,
e.g. because we would like to retrieve input in a longer text. In this case the wildcards will
eventually no longer be an adequate means: if we also want to disassemble the input on
the page of the object and the text attributes which have been searched through it would be
better to use the full-text search.

1.3.2.3 Fulltext search and indexation
If we want to view or search through longer texts word by word, e.g. description attributes
we recommended the use of full-text index. What does something like that look like?

The full-text index records all terms/words which occur within a portfolio of texts so that i-views
can quickly and easily look up where a particular word can be found in which texts (and in which
part of the text).
"Texts", however, are not usually separate documents within i-views, but the character string
attributes which have to be searched through. Their full-text indexing is a prerequisite for
the fact that these attributes are offered in the search configuration.

Even full-text indexing concerns the deviations between the exact sequence of characters
within the text and the text which is entered in the index and which can hence be retrieved
accordingly. An example of this: a message from the German music scene:

In this example we find a small part of the filter and word demarcation operations which are
typically used for setting up a full-text index:

Users’Manual 5.7
96/191

Word demarcation / tokenizing: often in punctuation such as exclamationmarks are placed
directly on the last word of the sentence without a space in between. In the full-text index,
however, we want to include the entry {tour}, not {tour!} - hardly anyone will search for the
latter. For this purpose, when setting up the full-text index we have to be able to specify
that certain characters do not belong to the word. The decision is not always so easy: In a
character string such as "Cuddle-Classic" which occurs in a text we have to decide whether
we want to include it as an entry in the full-text index or as {cuddle} and {classic}. In the first
instance our message will then only be found if an exact search is made for "Cuddle-Classic"
or, for example, "*uddle-c*", in the second instance for all "classic" searches.

What we will probably keep together in spite of the occurrence of punctuation, i.e. exclude
from tokenizing, are abbreviations: when AC/DC come to Germany o.i.t. (only in transit) it is
probably better to have the abbreviation in the index instead of the individual letters.

Filter: by using filter operations we can bothmodify words when they are included in the full-
text index and also completely suppress their inclusion. Known: stop words, at this point we
can maintain a list. Moreover, we probably do not want individual words (Bela B.) to be in
the index like this - the likelihood of confusion is too great. Using other filters we can restore
words to their basic forms or define replacement lists for individual characters (e.g. in
order to eliminate accents). Other filters, in turn, clear the text of XML tags.

We can set all this in the Knowledge Builder within the global settings via Index configuration
> Indices. We can then assign these configurations to the character string attributes. The in-
dex configuration is organised in such a manner that filtering can take place before the word
demarcation and after the word demarcation.

The full-text search does not affect the wildcard automatism of the other queries but the
user may, of course, provide his input with wildcards.

1.3.3 Search pipeline
Search pipelines enable individual components to be combined to complex queries. Single
components perform operations in the process, e.g.:

• traversing the Knowledge Graph and thus determining the weighting
• performing structured queries and simple queries
• compiling hit lists

Every query step produces a query output (usually a number of objects). This query output
may, in turn, be used as input for the following components in the pipeline.

Example

Let us assume that songs and artists from our music graph are characterised with tags
named ’moods’. Based on a certain ’mood’ we now want to find which bands best repre-
sent this mood.

Users’Manual 5.7
97/191

Step 1 of our search pipeline goes from a starting mood (in this case "aggressive") via the
relation is mood of to the songs which are assigned to the mood ’aggressive’:

In the second step we go from the number of songs detected in the ’mood’ searched for to
the corresponding bands via the relation has author:

Users’Manual 5.7
98/191

Now we would like to pursue a second path: from the starting point ’mood’ "aggressive" to
the musical directions which are characterised by aggressiveness.

Based on this number of relevant musical directions we have to go to bands which are as-
signed to this mood. We go down this alternative path in one step using a structured query:

Users’Manual 5.7
99/191

From the last two steps we give the indicator "musical direction" a somewhat lower weighting
and compile the outputs at the end:

Users’Manual 5.7
100/191

The steps are processed in sequence: the input and output define which step will continue
to work with which hit list. For instance, in this manner we would be able to begin again with
’mood’ on our alternative path.

The principle of weightings

It was the goal to give the bands we obtained as outputs a ranking which shows how great
their semantic "proximity" is to the mood aggressive. In particular, we influence ranking in
this search at two positions: right at the end we weight bands higher in the summary which
are found both via their musical direction and their songs. In this case this applies to Linkin
Park and the Sex Pistols. The higher ranking of Linkin Park results from the fact that again and
again different songs lead to Linkin Park with the mood aggressive. Since more aggressive
songs from Linkin Park are in the database, Linkin Park should be ’rewarded’ with a higher
ranking.

1.3.3.1 Configuration of search pipelines
The individual components of a search pipeline are depicted in the main window in the box
components in the order of sequence in which they are implemented.

Using the button add we can insert a new component at the end of the existing components.

Grouping with blocks serves only to provide an overview, e.g. for the compilation of several
components in a functional area of the search pipeline.

The order of sequence of the steps can be changed using the button upwards and downwards
or with drag & drop.

Using the button remove the component selected will be removed, to include all possible sub

Users’Manual 5.7
101/191

components. The configuration for the component selected is displayed on the right-hand
side of the main window.

Configuration of a component

A selected component may be configured on the right-hand side of the main window using
the tab "configuration": most components need input. This usually comes from a previous
step. In this way, the first components in our example pass on the output under the variable
"songs" to the next component, this then goes from there to the bands and, in turn, gives the
output to the next steps as "bandsThroughSongs":

Using the input and output variable we can also, in later steps, re-set to the initial output
which we saw in the last paragraph.

We define the input parameters as global settings for the search. Under the name which we
assign here we can then access these inputs in our search pipeline during each step. In our
example the input parameter for identifying typical bands is the mood.

Some components enable a deviation from the standard processing sequence:

Individual processing: elements of a quantity, e.g. hits from a search may be processed
individually. This is practical if you want to assemble an individual environment of adjacent
objects for search hits. In individual processing each element of the configured variable in
the single hit is saved and implemented in the sub components.

Condition for set parameters: this component only carries out further sub components if

Users’Manual 5.7
102/191

predefined parameters have been set, whereby the value is insignificant. New sub compo-
nents may be added by using the ’add’ tab.

KPath condition: By using a KPath condition we can determine that the sub components may
only then be implemented if a condition expressed in KPath is fulfilled. If the condition is not
fulfilled the input will be adopted. KPath is described in the manual for KScript.

Output: we can stop the search at any stage and return the input. This component is also
useful for testing the search pipeline.

The block components which we have also used in our example group a lot of individual
steps. In order to maintain an overview in extensive configurations we can also change the
name of the component using the tab "description" and add a comment as well. Neither the
block components nor the description have any functional effects. Both of them only serve
the ’legibility’ of the search pipeline.

Test environment

The test environment can be invoked by several ways:

Using the test environment in the menu we can analyse the functioning of the search. The
upper section contains the search input and the lower section the output. The input may
be a search text or an element from the Knowledge Graph, depending on which required
and optional input parameters we have globally defined in the search pipeline. If we wish to
enter an element from the Knowledge Graph as a starting point we select the corresponding
parameter line and add an attribute value or a (Knowledge Graph) element, depending on
the type.

Users’Manual 5.7
103/191

On the tab Trace search a report of the search will be displayed. This primarily consists of
the configuration of the output variables and the duration of the implementation of each
component. The log begins with the pre-configured variables (search string) as well as active
users.

Calculation possibilities

In the case of some components it is possible to summarise several quality values into one
single quality value - e.g. in "summarise hits" but also when traversing the relations (see ex-
ample above). For this purpose the following methods of calculation are available:

• addition / multiplication
• arithmetic average / median
• minimum / maximum

Users’Manual 5.7
104/191

• ranking

The option "ranking" is then always suitable when we want to assemble an overall picture
from individual references, e.g. if we want to calculate many paths, at least partially inde-
pendent paths - at the end still with differing lengths - to an "overall proximity". Using the
ranking calculation we ensure that all positive references (all independent paths) keep in-
creasing their similarity without exceeding 100%.

In the search pipeline quality values are always specified as floating point numbers. The
value 1 thereby corresponds to a quality of 100%.

1.3.3.2 The single components
All elements that can be added to the search pipeline either incorporate a structural function,
a query function, a logical function or functions for computing qualities:

Users’Manual 5.7
105/191

Block
The block element is only for optical reasons. To keep larger search pipelines clearly ar-
ranged, it can be used to structure several succeeding elements into logical groups. To do
so, simply drag&drop the elements underneath the block. The block has no influence on the
results of the search pipeline.

Weighted relation/attribute
Starting with semantic objects, we can traverse the graph in this step and collect relation
targets or attributes. To do so, we have to specify the type of relation or attribute.
Note: Only collected targets are output, rather than the initial set. If this is to be displayed,
we then have to enable the option "Add source hits to result" at the "Hits" tab.
When traversing a relation, the weighting of hits can be influenced. Let s assume we want
to semantically enhance the “initial mood” of our example search with “sub-moods”. But this

Users’Manual 5.7
106/191

indirection is to be reflected in a ranking: Connections to bands that run via sub-moods are
not supposed to count as much as connections via an initial mood. For this purpose, we can
assign a fixed value - e.g. 0.5 - for moving along the relation and then merge input quality,
e.g. multiply it. In this case the sub-moods added in this step count only half as much as
direct moods.
Instead of assigning a fixed weight for moving along the relation, we could also read the value
from a meta-property of the basic type float of the selected relation. If the attribute is not
available or no attribute has been configured, the default value is used. The value should be
between 0 and 1. The hit generation can be configured in detail: For relations, you have the
option to also generate a new hit for the source of the relation (rather than for the relation
target).
If a relation has been selected as a property and hits are generated for relation targets, we
can also transitively trace the relation. The quality value is reduced with each step until the
value falls below the specified threshold. If an object has more relations than specified under
maximum fan-out, these relations are not traced. The higher the damping factor, the more
the quality value is reduced.

Structured query
We can use structured query components to either search for semantic objects/go from an
existing set to other objects (as with the weighted relation) or filter a set.
If we search for objects, we forward our initial set of hits from a preceding step into the
search via the parameter name. (In general: Within the expert query, variables of the search
pipeline, e.g. search string, can be referenced via parameters.) In this case, the input stays
blank.

For filtering, in contrast, we specify a set of objects as the input. The output contains all
objects that meet the search condition. Objects that do not meet the search condition can
optionally be stored in an additional variable (Rest).
We can either define the structured query ad hoc directly in the component or we can use
an existing structured query.
Please note: If an existing search is selected, no copy is created. Any changes to the struc-
tured query that we make for search pipeline purposes also modify the query for all other
uses.

Query
You can use the “Query” component to execute simple queries, full text queries and other

Users’Manual 5.7
107/191

search pipelines. Simple queries and full text queries receive a string here, e.g. the search
string: This is a parameter that is available for processing user input in all search pipelines.
The hit list of the called search fills the output of this component.

By integrating search pipelines into other search pipelines, we can factorize sub-steps that
occur more frequently. Several parameters and entire sets of hits (“hit collections”) can be
transferred to other search pipelines. With integrated search pipelines we can also replace
several parameters, that is, we can access of every sub-step output in the integrated search
and vice versa. If we go to selected parameters, we can also rename them, for example, if
we want to use a set of hits from the integrated search but have already used the name.
Alternatively, we can also apply only some of the parameters from the integrated search in
order to avoid such conflicts.

Merge hits
We can use this component to summarize different sets of hits (“hit collections”) from previ-
ous steps. The following methods are available for summarizing:
Join: All hits that occur in at least one of the sets are output as a result
Intersect: Only hits that occur in all sets are output as the result.
With joins and intersects, a semantic object can occur in several sets of hits (“hit collections”)
and has to be computed as one total hit with a new hit quality. The aforementioned calcula-
tion options are also available here.
Difference: One of the sets of hits (“hit collections”) must also be defined as the initial set.
The other sets are deducted from this set.
Symmetric difference: The result set consists of objects that are included in exactly one
subset (= everything except for the intersection, when there are two sets).
Three different types of total hits can be generated. The selection is particularly relevant if
partial hits include additional information.
• To generate uniform hits, remember the original hits as the cause: New hits are gener-
ated that contain the original hit as the cause.
• Extend original hits: The original hit is copied and receives a new quality value. If there
are several hits for the same semantic object, a random hit is selected.
• Generate uniform hits: A new hit is generated. The properties of the original hit are lost.

Condition: Parameter set
This element assures that its subcomponents are only processed if preset query parameters
(= input for the query elements) are set. The respective parameter can be assigned within
the configuration tab. If the parameter is not set, the affected part is skipped and the next
part will be processed.

Process individually
This element is used for processing several hits (= array of hits) in order to use each single hit
(= nth element of the hit array) as an input for query elements that only can process a single
hit at once. This comes into account for queries expecting a string as input.

Users’Manual 5.7
108/191

Example: The hits of a preceeding query are intended to be processed by a simple query. To
do so, we process these hits individually: The hits, which are passed on in an array, will be
split up again into individual array elements (for more information, see chapter "Model ’hit’
"). Due to the fact the single hit itself is consisting of a semantic element, its hit quality, its
hit cause and possibly further user-defined query properties, a script is needed to return the
name of the semantic element of the hit. The returned name string then can be used as an
input for a simple query. The hits of the simple query for each input element can be merged
again into a single hit array by the query element "Merge partial hits".
Note: To merge the hits from the element "Process individually" an to calculate the overall
hit quality correctly, the element "Merge partial hits" is needed.
Merge partial hits

During individual processing you frequently have to generate a total set from partial hits. The
component "Merge partial hits" enables you to do so. This summarizes all hits of one ormore
partial sets of hits ("hit collections"). The difference to "Summarize hits" is that summarizing
only takes part at the end, not for every partial hit set. This is relevant in particular when
calculating the quality because summarizing hits would return incorrect values, in particular
for the computing method "Median".

Script
A search pipeline can contain a script (JavaScript or KScript). This can access the variables
of the search pipeline. Furthermore, a script can transfer several parameters to the search
pipeline. The result of the script is used as the result of the component.
JavaScript API and KScript are described in separate manuals.

Set quality/causes
For hits arising as a result caused by the input from preceeding (and also distant) query ele-
ments, dedicated quality values or indirect causes might be needed which otherwise might
be missing.
Setting individual qualities comes into account especially when a structured query has been
used before: Structured queries always return hits with the hit quality 1.0 (100 %) due to the
fact that the hits arise wether a structural relationship could be found or not - in this case,
existance is no gradual match (like the output of a string-processing query). By setting the
output parameter from query elements positioned before the structured query as a source of
quality information, an "interconnection" can be built to recapture individual quality values
again. If just the overall quality needs to be adjusted, the query element "Scale quality" is
adequate here fore. If a quality influce per relation distance is needed, the query element
"Weighted relation/attribute" is more suitable.
Setting the causes of hits comes into account when not the direct causes, but distant causes
from another (preceeding) query are needed. By setting causes, the hits can be "explained"
in forms of a graph: The resulting semantic elements, their originally causing elements and
all intermediate semantic elements will be shown at once.

Set quality from attribute value
For hits, we can copy the quality value from an attribute of the semantic object. If the ob-
ject does not have exactly such an attribute, the default value is used. The value should be
between 0 and 1.

Users’Manual 5.7
109/191

Compute quality from weighted qualities
To adapt the quality of a search hit, it can be useful to compute a total value from individual
partial qualities. The qualities must be available as numeric values. These values are used to
calculate a new total quality.

Compute overall quality of hits

You can use the individual quality values of a set of hits to compute a total quality.

Filter quality
We can restrict sets of hits (“hit collections”) to hits whose quality value falls within specified
limits (minimum or maximum). Normally, we want to filter out hits that fall below a certain
quality threshold.

Limit number of hits
If the total number of a set of hits is to be restricted, we can add the component “restrict
number of hits”. We can use the option “Do not split hits of the same quality” to prevent a
random selection in case of several hits of the same quality in order to comply with the total
number. We then get more hits than specified.
If some very specific cases, we can also randomly select the hits, e.g. if we have a large
number of hits with the same quality and want to generate a preview.

Scale quality
Die quality values of a set of hits can be scaled. A new set of hits with scaled quality values is
calculated. The calculation takes place in two steps:
1. Die quality value of the hits are limited. The threshold values can either be specified or
calculated. The calculation determines the minimum and maximum value of the hits. If
thresholds are specified and a hit has a quality value that falls outside of the thresholds,
the value is limited to the threshold value. If you want to remove such hits, you have
to execute the restrict quality component first. Example: Mapping percentage values to
school grades. 30 % is average, over 90 % is high score. The values can be scaled linearly
from 30 % to 90 %.

2. Following that, the quality values are scaled linearly. Hits with the minimum/maximum
input value receive the minimum/maximum scaled value.

Compute hits quality
You can use a KPath expression to generate a new hit with calculated quality for a hit. The
KPath expression is calculated on the basis of the input.
Result

The "Result" element is used to determine at which position of the search pipeline processing

Users’Manual 5.7
110/191

ends and which parameter value is to be returned as result. Evereything underneath the
result element will not be processed.
This comes in handy when elements of the search pipeline are momentarily not needed:
They simply can be "parked" underneath the result element.

1.3.3.3 KPath
KPath allows addressing of objects within the Knowledge Graph. The notation is similar to
XPath but differs in some respects.
The individual elements of the expression normally are separated by a slash "/". If a KPath
expression begins with "/", then the evaluation starts at the root type, else it starts at the
current object (depends on the context of the evaluation). If an element does not correspond
to one of the listed elements of the table, it will be interpreted as a name of a sub type. Simple
names can be specified without quotation marks.
When specifying a language, it must be stated according its ISO 639-2 code ("eng" for English,
"ger" for German, ...).
Examples:
• @Name
Attribute "Name"

• //book\Faust/∼author
Relation "author" of the book "Faust"

• //$artifact$/book{eng}
Sub type "book" (English name) of the type "artifact" (internal name)

• //book*[∼author/target()/@Name = "Goethe"]
All books which had been written by Goethe

1.3.3.3.1 Names
In combination with@, /, //, \ and \\, following kinds of names can be used:

Name Description
name Name in standard language. Without quotationmarks the name

needs to be begin with a letter, an asterisk or with an underscore
sign. Whitespaces or special characters which are used in other
expressions are not allowed. The name must comply with fol-
lowing regular expression:
[a-zA-Z_*][∧/(){}$%{}[],∼@§#+-’"s|∧&]*
(For better reading, the escape character "\" has been left out)

"name"
’name’

If the name doesn’t meet the above-mentioned requirements,
it needs to be surrounded by single quotes or double quotes.
Here, the backslash sign "\" serves as escape character for pos-
sibly used apostrophes, e. g. ’Wendy\’s’.

Users’Manual 5.7
111/191

name{lang} Name in the specified language "lang"
$name$, $"name"$ Internal name
§name§, §"name"§ System name
#ID42_1013 ID of the object

Names are not replaceable by variables and must therefore be a part of the script.

1.3.3.3.2 Operators
Numeric values can be linked by the operators +, -, * or /.
When using "*", "-" and "/", at least one white space character must surround the operator
on both sides each.
Parenthesis are supported, e. g. "(5 + 3) * 4" equals the value 32.
Example: Sum of all relations between Goethe and Schiller:
\\Goethe/∼*/size() + \\Schiller/∼*/size()

The operator "+" also can be used to append strings:

//person\Goethe + " wrote " + //book\Faust

leads to:

Goethe wrote Faust

By means of the unary operator "!", a Boolean expression can be negated, e. g.:
!1=2

For some operators, an alternative notation only consisting of alphabetical characters is pos-
sible, e. g. "eq" for equality. Applying this notation, at least one white space character needs
to be used between operator and operand. The expressions are case-sensitive, so operators
are only recognized if written in small letters.
Possible operators are (in descending precedence):

Opera-
tor

Alternative
notation

Meaning

! not Negation (unary operator)
* Multiplication
/ Division
+ Addition, linking (only character strings)
- Subtraction

Users’Manual 5.7
112/191

< lt Smaller than
> gt Greater than
<= le Smaller than or equal to
>= ge Greater than or equal to
= eq Equal to
!= ne Not equal to
∧∧ xor Exclusive or (logical operator)
&& and And (logical operator)
|| or Or (logical operator)

Due to KScript basing on XML, operators like ’&&’, ’<’ or ’<=’ need to be written using entities
like ’<’ or ’&’ instead of the character signs ’<’ and ’&’ or alternative notation needs to
be used.
Example for "and":

<Path path="var(left) && var(right)"/>
<Path path="var(left) and var(right)"/>

Example for "smaller than":

<Path path="var(left) < var(right)"/>
<Path path="var(left) lt var(right)"/>

1.3.3.3.3 Conditions
Conditions can be specified using the following notation:
path1[path2]path3

On all elements out of path1 for which the condition path2 applies, path3 will be executed.
To express the condition path2, comparative operators can be used (see preceding section).
Boolean expressions can be linked with Boolean operators.
Example: Name of all books which had been written by Goethe:
//book*[∼author/target()/@Name = "Goethe"]/@Name/value()

1.3.4 Model "hit"
The “Hit” type content model is available to ensure that search queries can be processed and
transported both as quality and causes. A “Hit” can be seen as a container that summarizes
the element including several properties and makes it temporarily available to the context.

Users’Manual 5.7
113/191

The contained properties can be, for example, calculated hit quality, hit cause, change log
entry etc.
In search pipelines, the content models “Hit” and “Hits” are available. The “Hits” type is an
array of several “Hit” elements:

Meta-attributes of hits
In addition to the semantic element, the following meta-attributes are transported in a hit:
• Hit quality: Can have a value between 0 and 1 by setting a quality in a search pipeline;
the hits of a structured query receive the value 1 by default
• Hit cause: Refers to the input element that has led to the hit and its type
• Hit cause (snippet): Refers to the content or the search term that has led to the hit

For detailed information on the meta-attributes, refer to the JavaScript API.

Using hits in search pipelines
If a hit list is to be processed in a search pipeline by means of a simple query, individual
processing is required because the hit list is in the form of an array: Queries can process an
individual “hit” in the form of a string but not “hits” (= array). Converting a “hit” into string, in
turn, can be done using a script that precedes the simple query.

Users’Manual 5.7
114/191

Example script for converting a hit into a string:
function search(input, inputVariables, outputVariables) { return input.element().name(); }

Using hits in tables
The “Use hits” option is available in the column element configuration of a table. This option
determines whether the entire hit element (semantic element + meta-attributes) or only the
semantic element is to be forwarded to display query results.

Processing hits in tables via a script
If the query results are to be processed further using a script, the “Use hits” option deter-
mines whether the query result is supposed to be treated as a hit: The script is forwarded
either $k.SemanticElement or $k.Hit as a JavaScript object.

1.3.5 The search in the Knowledge Builder
With the exception of the structured queries which are created in the folders and also im-
plemented there, all searches in the header of the knowledge builder are made available for
internal usage.

For this purpose we have to drag & drop a pre-configured search only into the search box of
the header of the knowledge builder. If this contains several searches to be selected from
you can select the desired search from the pull-down menu by clicking on the magnifier icon.
The search input box always contains the search mode which was last carried out.

We can remove the search using the global settings where we can also change the sequence
of the various searches in the menu.

1.3.6 Special cases

Users’Manual 5.7
115/191

1.3.6.1 Fulltext search Lucene
The full-text search may also alternatively be carried out via the external indexer Lucene. The
search configuration is then analogue to the standard full-text search, i.e. attributes may, in
turn, be configured in the search which are also connected to the Lucene index; the search
process is also analogue. In order to configure the Lucene indexer connection we hereby
refer you to the corresponding chapter in the admin manual.

1.3.6.2 Search with regular expressions
Regular expressions are a powerful means of searching through databases for complex
search expressions, depending on the task concerned.

Search with regular expressions hit
The [CF]all the call, the fall
Car. cars
Car.* cars, caravans, Carmen, etc.
[∧R]oom doom, loom, etc. (but not room)

As search inputs, i-views supports the standard also known from the standard known from
Perl which, for example, is described in the Wikipedia article for regular expression.

1.3.6.3 Search in folders
The search in folders is carried out in names of folders and their contents:

• folders whose name matches the search input
• fodlers which contain objects which match the search input
• expert searches which contains elements which match the search input
• scripts in which the search input appears
• rights and trigger definitions which contain elements which match the search input

Using the search input #obsolete, you can target your search for deleted objects (e.g. search-
ing in rights and triggers). When configuring the search the number of folders to be searched
through can be limited. Furthermore, the option "search for object names in folders" may be
deactivated. This is helpful if you do not want to search for semantic objects in folders be-
cause in the case of extensive fodlers (e.g. saved search results) the search for object names
may take a very long time.

1.3.6.4 Query for duplicates
After imports or due to other reasons such as quality assurance it can be necessary to check
for duplicates semantic elements. To do so, a specially configured structured query can be

Users’Manual 5.7
116/191

used.
Note: Because the structured query shown in the following example refers to elements of the
whole Knowledge Graph without further type restrictions (objects of top level type), executing
the query can take an unusually amount of time. It therefore is adviced to restrict the query
to the most exactly subtype as possible.
In principle, the structured query searches for different objects that have identical values
for their identifying attributes (here: objects with identical names).
The query for duplicates can be configured as follows:
1. Create a query for objects of the subtype in question. Add the identifying attribute as
condition (here: primary name).
2. Depending on the object, create a utility query. Use a negative reference (comparison
operator "is not") to make sure that only different objects will be found:

3. For comparing the attribute values against each other, the value fields need to be removed
first:

4. After having removed the value fields, the context menu offers the option "compare val-
ues". Add this condition and select the identifying attribute of the utility query to compare
against:

Users’Manual 5.7
117/191

Result: Structured query for searching duplicates.

1.3.6.5 Query for identical translations
Similar to the query for duplicates, the query for objects with identical translations makes
use of references and attribute value comparisons.
Note: Because the structured query shown in the following example refers to elements of the
whole Knowledge Graph without further type restrictions (objects of top level type), executing
the query can take an unusually amount of time. It therefore is adviced to restrict the query
to the most exactly subtype as possible.
The difference between this query and the query for duplicates is that it is all about one
and the same object this time, with the additional condition of identical attribute values in
different translation layers of one and the same attribute:

Users’Manual 5.7
118/191

1.4 Folder and registration
Along with the objects and their properties, we also build a variety of other elements in
a typical project: we define, for example, queries and imports/exports, or write scripts for
specific functions. Everything that we build and configure can be organized in folders.
The folders are shared with everyone else working on the project. If we do not wish to do so,
we can file things in the private folder, for example for test purposes. This is only visible for
the respective user.
A special form of the folder is the collection of semantic objects, in which we can file objects
manually, for example for processing at a later date. To do so, we simply move them to the
folders using Drag&Drop, and there are also operations to, for example, define result lists in
folders.
In the moment we delete one of these objects within the Knowledge Graph, it is also deleted
from the collection. If a semantic element is removed by clicking on "Remove from folder", it
is only removed from the collection but still exists within the Knowledge Graph. If the actions
"Delete" or "Delete selected elements" or "Delete all elements inside the folder" is used, the
semantic element actually is deleted and from the Knowledge Graph and therefore is not
accessible anymore within the collection.
Caution: The action "Remove from folder" has different functionalities, depending on the
context of use: In the case of folders containing import mappings, the action "Remove from
folder" actually means completely deleting the respective import mapping!
In the case of collections of semantic objects with more than 100 entries, for reasons of per-
formance, no determination of the table configuration that best suits the content occurs. We
can, however, request this by means of the context menu function “Determine configuration
of the object list” when necessary.

Registration
Queries, scripts, etc. can call each other (a query can be integrated into another query or into
a script, while, in turn, a script can be called from a search pipeline). There are registration

Users’Manual 5.7
119/191

keys for this purpose, with which we can equip queries, import/export mappings, scripts
and even collections of semantic objects and organizing folders to ensure they provide other
configurations with a functionality. The registration key must be distinct. Everything that
has a registration key is automatically added to the “Registered objects” folder, or in the
subfolder that corresponds to its type

Shift, copy, delete
Let us assume we have a folder called “Playlist functions” in our project. This might contain
an export, some scripts and a structured query “similar songs”, which we would like to use
in a REST service. The moment we give the structured query a registration key, it is added to
the folder “Registered objects” (“Technical” section). This means the structured query “similar
songs” appears in the folder “Registered object” under “Query”. It also remains there when
we remove it from our project subfolder “Playlist functions”. If we remove the registration
key, the query will automatically disappear from the registry.
The basic principle when deleting or removing: Queries, imports, scripts can be in one or
several folders at the same time, and at least one folder must contain them. Only when we,
for example, remove our query from the last folder will it actually be deleted. Only then does
i-views also request a confirmation of the delete action. The same applies for removal of the
registration key.
If we wish to delete the query in one step, regardless of the number of folders that contain
it, we can only do this from the registry.

Folder settings
We can define quantitative limits for query results, folders and object lists (lists of the specific
objects in the main window of the Knowledge Builder when an object type is selected on the
left-hand side) in the folder settings. Automatic query up to the number of objects speci-
fies up to which number of objects the contents of the folders or the object lists are shown
without any further interaction by the user. If the limit set there is exceeded, the list initially
remains empty, and the message “Query not executed” appears in the status bar. Executing
a search without an input in the input line shows all objects. This, at least, until the second
limit has been reached: Maximum number of query outputs, maximum number of outputs
in object lists - in this instance high values - there is actually no result when these values are
exceeded, queries must be restricted, e.g. in object lists in which we also have the beginning
of the name in the input box.

1.5 Import and export
By mapping data sources we can import data to i-views from structured sources and ex-
port objects and their properties in structured form. The sources can be Excel/CSV tables,
databases or XML structures.
The functions for import and export overlap to the most part and are therefore all available
in a single editor. In order to access functions for import and export, it is first necessary to
select a folder (e.g. the working folder). There the “New mapping of a data source” button
can be used to select a data source for the import or export.

Users’Manual 5.7
120/191

Alternatively, you can find the button on the “TECHNICAL” tab under “Registered objects” ->
“Mappings of data sources”.
The following interfaces and file formats are available for import and export:
• CSV/Excel file
• XML file
• MySQL interface
• ODBC interface
• Oracle interface
• PostgreSQL interface
• For the exchange of user IDs, a standard LDAP interface has been implemented.

The following section uses a CSV file to describe how to create a table-oriented import/export.
As all imports/exports apart from XML imports/exports are table-oriented and the individual
data sources differ only in terms of their configuration, the example for the mapping of the
CSV file can also be applied to the mapping of other databases and file formats.

1.5.1 Mapping of data sources
CSV files are the default exchange format for spreadsheet applications such as Excel. CSV files
consist of individual rows of plain text in which columns are separated by a fixed, predefined
character such as a semicolon.

1.5.1.1 Principle of operation
Let s use a table with songs as a first example: When the table is imported, we would like to
create a new, specific object of the type song for each line. The contents of columns B to G
become attributes of the song, or relations to other objects:

Users’Manual 5.7
121/191

Using the song as a basis, we build up the structure of attributes, relations and target objects
that should be created by the import (left-hand side). An object of type song is created this
way for row 18, for example, with the following attributes and relations:

Users’Manual 5.7
122/191

We can, however, also decide to distribute the information from the table in a different way,
for example allocate the year of release and artist to the album, and in turn the genre to the
artist. A row still forms a context, however this does not mean it must belong to exactly one
object:

Everywhere that we build up new, specific objects and relation targets in our example, we
must always specify at least one attribute for this object, in this case the respective name
attribute that allows us to identify the corresponding object.

Users’Manual 5.7
123/191

1.5.1.2 Data source - selection and options
Once we have selected the “New mapping of a data source” button, a dialog opens which
we must use to specify the type of data source and the mapping name. If we have already
registered the data source in the Knowledge Graph, then we will now find it in the selection
menu at the bottom.

By pressing “OK” as confirmation, the editor for the import and export opens. We can specify
the path of the file we wish to import under “Import file”. Alternatively, we can also select
the file using the button to the right of it. As soon as the file has been selected, the column
headings and their positions in the table are exported and shown in the field at the bottom
right. The “Read from data source” button can read out the columns again in the event of
any changes to the data source. The column “Mappings” shows us the respective attribute to
which the respective column of the table is mapped later on.

Users’Manual 5.7
124/191

The structure of our example table corresponds to the full default settings, so that there is
nothing else to factor in under the menu item Options. CSV files can, however, exhibit struc-
tures that are very different, which must be factored in using the following setting options:
Encoding: The character encoding of the import file is defined here. This provides ascii, ISO-
8859-1, ISO-8859-15, UCS-2, UTF-16, UTF-8 and Windows-1252 for selection. If nothing has
been selected, the default setting that corresponds to the operating system in use is applied.

Line separator: In most cases, the setting “detect automatically”, which is also selected by de-
fault, is sufficient. However, should the user establish that line breaks are not being identified
correctly, then the corresponding, correct setting should be selected manually. This provides
CR (carriage return), LF (line feed), CR-LF and None for selection. The standard used to encode
the line break in a text file is LF for Unix, Linux, Android, Mac OS X, AmigaOS, BSD and others,
CR-LF for Windows, DOS, OS/2, CP/M and TOS (Atari), and CR for Mac OS up to Version 9,
Apple II and C64.
1st line is heading: It may the case that the first line does not include a heading, and the
system must be notified of this by removing the checkmark set by default next to “1st line is
heading”.
Values in cells are surrounded by quotation marks is selected so that the quotation marks are
not included in the import when this is not wanted.
Identify columns: Whether the columns are identified using their heading, the position or the
character position must be specified, as otherwise the table cannot be captured correctly.
Separator: If a different separator than the default semicolon is used, this must also be spec-
ified when the column is not identified using the character position.
Moreover, the following rules apply: If a value in the table contains the separator or a line
break, the value must be placed in double quotation marks. If the value contains one quota-
tion mark, this must be doubled (»“”«).

Users’Manual 5.7
125/191

1.5.1.3 Definition of target structure and mappings
1.5.1.3.1 The object mapping
We will now start setting up the target structure that should be produced in the Knowledge
Graph. In our example, we are starting with object mapping of the songs. In order to map a
new object, we must press the “New object mapping” button.

The next step is to specify the type of object for import.

There are further specific settings in the options tab of the object mapping.
With objects of all subtypes: If the checkbox is set to "With objects of all subtypes", the
import also includes objects from all subtypes of "Song". Since this is usually desired, the
checkmark is set here by default.
Exact type is specified by the followingmapping: If the exact type to which the object is to
be created is identified in the import source, this can bemapped here via the "New..." button.
It must be a subtype of the type specified in the tab "Mapping".
Allowmultiple objects: It is possible that the Knowledge Graph already contains several ob-
jects with correspondent identifying properties (correspondent names). If the import map-
ping needs to be referred to these objects, an ambiguity conflict occurs. If you set the check-
mark here, the import for all these objects is going to be performed disregarding the ambi-
guity.
If you do not set the checkmark, the import will not be carried out for the multiple occuring
objects and instead the user will be informed that the importer cannot uniquely identify the
object.

1.5.1.3.2 The attribute mapping / Identifying objects
Now we want to link the information in the table to the object mapping of the songs. At-
tributes for individual songs are represented along with relations. In order to first create the
track name for a song in the mapping, we add an attribute to the object mapping for song.
Clicking on the “New attribute mapping“ button opens a dialog, which must be used to select
the relevant column from the table to be imported.

Users’Manual 5.7
126/191

As this attribute is the first one we created for the object mapping of songs, it is then auto-
matically mapped to the name of the object, as the name is usually the most commonly used
attribute.

The first attribute created for an object is also automatically used for identification of the
object. Note that for string attributes like the primary name, the language can be specified
when translation layering is activated. When nothing else is specified, the current language
(display language of the Knowledge-Builder) is automatically used as reference. The language
can be specified within the language tab:

Users’Manual 5.7
127/191

An object must be identified by at least one attribute - by its name or its ID, or by a combi-
nation of multiple attributes (as with the first and last name and date of birth of a person) -
it should already exist so that it can be unambiguously found in the Knowledge Graph. This
prevents unwanted duplicates from being created during import.
Note: Meta-Attributes at relations can also be imported. Here it is ensured that both the
relation source and the relation target are specified and identified, otherwise the relation is
ignored by the importer.
In the “Identify“ tab it is possible to subsequently change the attribute identifying the object,
or to add multiple attributes. In addition, it is possible to specify whether the values should
be matched in a case-sensitive fashion, and the query should return identical values (with-
out index filter / wildcards). The latter is relevant if filters or wildcards are defined in the
index that specify, for example, that a hyphen should be omitted from the index. The term
would not be found with a hyphen if the search took place only via the index; in this case, a
checkmark would be needed here so the search only finds the exactly identical value.

Now we can add further attributes to object mapping that do not need to contribute towards
identification, e.g. the length of a song - and this is once again done via the “New attribute
mapping” button. (Please note: first the object mapping “objects of song” must be selected
again.) Now we select the “Length” column from the table to be imported. This time we
have to manually select the attribute to be mapped to the “Length” column. The field on
the bottom right contains the list of all possible attributes defined in the schema that are
available to us for objects of the “song” type, among them also the “length” attribute.

Users’Manual 5.7
128/191

Mapping of translations
For string attritbutes with translations, e.g. the primary name of objects, we can define in
which language the value needs to be imported.
If an attribute mapping is created for a translated attribute, the import language automat-
ically is set to the "Current language". The current language equals the language in which
the Knowledge Builder has been started (which at the same time is the language of the user
interface).
If the import needs to be done in another language than the current language, this can be
specified by selecting the tab "Language" and then by selecting a language of the list, which
then becomes the chosen language for the attribute mapping.
In case of an import source containing several translations of one and the same attribute
(within the same line), these values can be imported within one import mapping simultane-
ously.
The simultaneous import of translations for an attribute is done as follows:

Users’Manual 5.7
129/191

For each language, create a separate attribute mapping for the same attribute, but specify a
different import language
In the "Language" tab for one of the attributemappings, add the relevant attributemappings
of the other languages to the field "Mappings of other translations of the same attribute"
This prevents from separate attributes being created for each translation and ensures that
corresponding translations are imported altogether at the same attribute.

1.5.1.3.3 The relation mapping
Next, we want to map the album on which the song is located. Since albums are concreate
objects in the Knowledge Graph, we need the relation that connects the song and the album
to do this. To map a relation, we first select the object for which the relation is defined and
then click on the button “Map new relation.”

Following that, just like for attributes, we get a list of all possible relations; and the required
relation “is included in” is naturally included.

Users’Manual 5.7
130/191

In the next step, we now have to define where in this table the target objects come from. A
new object mapping is required for the target; this is created using the “New” button. If the
type of the target object is uniquely identified in the schema, it is copied automatically. If not,
a list of possible object types appears.

For new object mappings, we then once again have to select the attribute that identifies the
target object etc. This creates the target structure of the import.

Users’Manual 5.7
131/191

1.5.1.3.4 The type mapping
Types can also be imported and exported. Let s assume we want to import the genres of
songs as types.
To map a new type, we choose the “New type mapping” button.

Following this, we have to specify the super-type of the new types to be created, in our ex-
ample, the super-type would be “Song:”

Following that, we have to specify from which column of the imported table the name of our
new types is to be taken:

Users’Manual 5.7
132/191

Following that, we still have to specify on the “Import” tab that our new types are not sup-
posed to be abstract:

If we now want to assign the corresponding songs to their new types, we have to use the
system relation “has object.” In older versions of i-views this relation is called “has individual.”
As the target we chose all objects of song (incl. subtypes), which are defined via the Name
attributes in accordance with the Song title column.

Users’Manual 5.7
133/191

If we now import this mapping, we get the desired result. The songs that already exist in
the Knowledge Graph are taken into account by the import setting “Update or create if not
found” and moved under their respective type so that no object is created twice (see chapter
Import behavior settings). A quick reminder: A specific object cannot belong to several types
at once.
There is another special case. If we have a table in which different types occur in one column,
we can also map this in our import settings.

To do this, we count the mappings of objects to which we want to assign subtypes (in this
case “objects of location”) and then select the corresponding super-type on the “Options”
tab.

It is also important not to forget to specify on the “Import” tab that the type is not supposed
to be abstract so that concrete objects can be created.
Caution: Assuming Liverpool already exists in the knoledge graph but is assigned to the type
“Location” because it did not have subtypes such as “City” and “Country” at that time. In this
case, Liverpool is not created anew under the type City. Reason: The objects of the Location
type are only identified via the name attribute and not via the subtype.

1.5.1.3.5 Mapping of extensions
Extensions can also be imported and exported. Let s assume we have a table that shows the
role of a band member in a band:

Users’Manual 5.7
134/191

Ron Wood is a guitarist with the Faces and the Rolling Stones, but a bassist with the Jeff Beck
Group. In order to map this, we must select the object for which an extension was defined in
the schema and then press the “New extension mapping” button.

Like an object mapping, an extension mapping queries the corresponding type. In the
schema of the music graph, the “Role” type is an abstract type. So it is necessary to de-
fine in the mapping that the role is to be mapped to subtypes of the “Role” type (see Type
mapping chapter).

As with objects and types, the relation can be mapped to the extension (or to the subtypes
of an extension).

Users’Manual 5.7
135/191

1.5.1.3.6 The script mapping
Note: The script mapping can only be used upon export. The script can be written in either
JavaScript or KScript. Export mappings are only available in forms of a CSV/Excel mapping.
For the export, we have to specify the columns for the properties to be exported. For the
mapping of the individual property, we then can asssign the output column ("Map to"):

The script mapping is, for example, used when we wish to combine three attributes from
the Knowledge Graph to form an ID. However, this may slow down the export. (In the case
of an import, this could be mapped using a virtual property more easily. The use of virtual
properties is explained in the chapter "Table Columns".)
The following case is another example of the use of a script in the case of an export. It shows
how several properties can be written into a cell with a separator. In this case, we wish to
generate a table which lists the song names in the first column and all moods for the songs
separated by commas:

To generate the second column, we require the following script:

function exportValueOf(element) {
var mood = "";
var relTargets = $k.Registry.query("moodsforSongs").findElements({songName: element.attributeValue("objectName")});
if(relTargets && relTargets.length > 0) {

Users’Manual 5.7
136/191

for(var i=0; i < (relTargets.length-1); i++) {
mood += relTargets[i].attributeValue("objectName") + ", ";

}
mood += relTargets[relTargets.length-1].attributeValue("objectName");

}
return mood;

}

The script contains the following structured query (registration key: “mood ForSongs"):

The expression “findElements” allows us to access a parameter (in this case “songName”)
within the query. The “objectName” is the internal name of the name attribute in this Knowl-
edge Graph.
Within the if-instruction we state that when an element has several relation targets, these
should be shown separated by a comma. After the last relation target that runs through
the loop, there should no longer be a comma. Even when an element only has one relation
target, this is shown without a comma accordingly.
The result is a list of songs with all their moods, which appear separated by a comma in the
second column in the table:

1.5.1.4 Mapping of several values for an object type at an object
If several values are specified for an object type when there is an object (in our example,
there are several “Moods” for each song), then there are three possible ways the table will

Users’Manual 5.7
137/191

look. For two of the three possible ways, the import must be modified, which is described in
the following.
Option 1 - Values separated by separators: The individual values are found in a cell and are
separated by a separator (e.g. a comma).

In this case, we go to the mapping of the data source, where the general settings are found,
and to the “Options” tab found there. The setting used to specify separators within a cell is
found here in the lower section. We now only have to locate the corresponding column of the
table to be imported (“Mood”) and enter the separator used (“,”) in the column “Separator”.

Option 2 - Several columns: The individual values are located in their own respective column,
whereby not every field must be filled in. As many columns are required as the maximum
number of moods there are per song.

In this case, the corresponding relation must be created the same number of times as there
are columns. In this case, the first relation must, accordingly, be mapped to “Mood1”, the
second relation to “Mood2” and the third relation to “Mood3”.

Users’Manual 5.7
138/191

Option 3 - Several rows: The individual values are located in their own respective row. Please
note: In this case, it is essential that the attributes that are required for identification of the
object (in this case the track name) appear in every row, as otherwise the rows would be
interpreted as their own respective object without a name, making a correct import impossi-
ble.

In this case, no special import settings are required, as the system identifies the object using
the identifying attribute and creates the relations correctly.

1.5.1.5 Settings of the import behaviour
During the import process, a check is always performed to determine whether an attribute
already exists. “Identify“ infers concrete objects from attributes. When we refer below to “ex-
isting attributes“, these are attributes whose value precisely matches the value in the column
to which they are mapped. When we refer to existing objects, we mean concrete objects that
have been identified through an existing attribute.
Example: If our Knowledge Graph already contains a song called “Eleanor Rigby“, the name
attribute (mapped to the “track name“ column in our import table) is an existing attribute, so
the song is an existing song as long as the song is identified only via the name attribute.
The settings for import behavior allow us to control how the import should react to existing

Users’Manual 5.7
139/191

and new semantic elements. The following table shows a brief description of the individual
settings, while the sub-chapters of this chapter contain detailed and descriptive explanations.

Setting Brief description
Update Existing elements are overwritten (updated), no new elements

are created.
Update or create if not
found

Existing elements are overwritten; if none exist, they are cre-
ated.

Delete all with same
value (only available for
properties)

All attribute values that match the imported value are deleted
for the respective objects.

Delete all with same type All attribute values of the selected type are deleted for the rel-
evant objects, regardless of the values match or not.

Delete Is used to delete that exact element.
Create Creates a new property/object irrespective of whether the at-

tribute value or the object already exists.
Create if type not found
(only available for at-
tributes)

An attribute of the required type is only created if none of this
type exists.

Create if value not found
(only available for at-
tributes)

An attribute with this value is only created, if none with this
value exists.

Do not import No import.
Synchronize In order to synchronize the contents for import with the con-

tents in the database, this action creates all elements that do
not yet exist, updates all elements that have changed, and
delete all elements that no longer exist.

During an import, we have to decide individually for every mapped object, every mapped
relation and every mapped attribute which import settings we want to use.
Note: Unlike in other editors of the Knowledge Builder, a setting is neither “inherited” by
the subordinate mapping elements, nor is the import setting for an object “inherited” by its
attributes.
The import mapping
The import mapping of the i-views Knowledge-Builder is a row-based system.
If errors occur due to the data, they will be reported according to their row numbering when
the import transaction is done. Please pay attention that the row numbering of the error
message relates to the table shown in the import preview when clicking on "Show table".
If empty rows exist in the source table, they are filtered out by the import mechanism. Since
the empty rows don’t carry any information, they are not being analyzed (avoiding unnec-
essary processing load for comparison with the Knowledge Graph). Therefore pay attention

Users’Manual 5.7
140/191

that in case of empty rows, the row numbering of source table differs from the row number-
ing of the import mechanism (including table preview).

1.5.1.5.1 Update
If this setting is applied to an attribute, it ensures that the value from the table overwrites
the attribute value of exactly one existing attribute. No new attributes are created with this
setting. If the object has more than one attribute value of the selected type, no value is
imported.
If you use the “Update” setting for an identifying attribute while using the “Update or create
if not available” setting for a corresponding object, the error message “Attribute not found”
appears, if the identifying object is not available in i-views.
If “Update” is applied to an object, this setting ensures that all properties of the object can
be added or changed by the import. New objects are not created.

Example: Let s assume we keep a database of our favorite songs. We have just received a list
with songs that contain new information. We want to get this information into our database
but prevent songs that are not our favorite songs from being imported. We use the “Update”
setting to do this.

Users’Manual 5.7
141/191

The song "About A Girl" is already available in the Knowledge Builder.

The import table contains information on the length, rating and creator of the song.

For Song objects we specify that they are supposed to be updated. All attributes, relations and
relational targets receive the import setting “Update or create if not available yet.”

Users’Manual 5.7
142/191

The result: The song has been updated and has received new attributes and relations. Already
existing properties have been updated (value).

1.5.1.5.2 Update or create if not found
This import setting is required in most cases and is therefore set as the default setting. If
elements already exist they will be updated. If elements do not exist yet they are created in
the database.

1.5.1.5.3 Delete all with same value
This import setting is only available for properties (relations and attributes) and is only used
when the import setting “Delete” cannot be used for deleting. “Delete” does not function
for deleting when a relation or an attribute occurs on an object several times with the same
value. If an attempt is made nonetheless, an error message appears. For example, the song
“About A Girl”may have been linked to the band “Nirvana” using the relation “has author” by
mistake.

Users’Manual 5.7
143/191

In cases like this, the import setting “Delete” does not have an affect, because due to multiple
occurrences, it does not know which relations it is supposed to delete. In this case, “Delete
all with the same value”must be used.

1.5.1.5.4 Delete all of same kind
This import setting is used if all attributes, objects or relations of a type are supposed to be
deleted, irrespective of existing values. In contrast to this, the settings “Delete” and “Delete all
with identical value” take the existing values into account. Only the elements of those objects
that occur in the import table are deleted.
Example: We have an import table with songs and the duration of the songs. We see that
the duration differs in many cases and decide to delete the duration for these songs to make
sure we do not have any incorrect information.

For most songs, the duration in the import table differs...

Users’Manual 5.7
144/191

... from the duration of the songs in the database.

For the attribute “Duration" we use the import setting “Delete all of the same type.”

After the import, all attribute values of the attribute type duration have been deleted for these 4
songs.

1.5.1.5.5 Delete
The import setting “Delete” is used to delete exactly the one object/ exactly the one rela-
tion/exactly the one attribute value. If none or several objects/relations/attribute values
match the elements for import, an error message about this appears and the elements con-
cerned is not deleted.

1.5.1.5.6 Create new
This import setting creates a new property/a new object irrespective of whether the attribute
value or the object already exists. Sole exception: If a property may only occur once (ob-
serve the setting “May have multiple occurrences” for the attribute definition), then the new
attribute is not created and an error message appears noting this.

1.5.1.5.7 Create if type not found
This import setting is only available for attributes. A new attribute value is only created when
the corresponding attribute does not yet have a value. The values do not have to be the
same; what matters is that one value or another exists, or does not exist, for the correspond-
ing attribute type. The simultaneous import of several attribute values to one attribute type
is not possible, as in this case it is not possible to decide which of the attribute values should
be used.
Example: Assuming that we have an import table that contains the musicians with their alias
names. A number of musicians also have several alias names. In this case, we cannot use the
setting “Create type if not found,” because then all musicians with several alias names would

Users’Manual 5.7
145/191

not be given one.

1.5.1.5.8 Create if value not found
This import setting is only available for attributes. A new attribute value is only created if the
object does not yet have this value for the corresponding attribute.
Example: Let’s take again the import table that includes musicians wih their alias names.
Here we can use the setting "Create value if not found", because then the musicians with
several alias names can get all these alias names.

1.5.1.5.9 Do not import
The import setting “Do not import” allows us to specify that an object or a property should
not be imported. This is useful when a mapping has already been defined and we want to
use it again, however do not want to import specific objects and properties again.

1.5.1.5.10 Synchronize
The import setting “Synchronize” should be used with caution, because it is the only import
setting that not only affects the objects and properties in i-views that have values that match
those in the import table, but also extends to all elements of the same type in i-views. When
an import table is synchronized with i-views, in principle this means that after the import, the
result should look exactly the same as it does in the table.
If objects of one type are synchronized, all objects of this type that are not in the im-
port table are deleted. The objects that exist are updated and the objects that are not in
i-views are created as new objects.
Example: We would like to synchronize the music fairs in i-views (at the left) with a table with
the fairs and their date (at the right):

For objects of the “Fair” type, we select the import setting “Synchronize;” for the individual
attributes Name and Date of fair the import setting “Update or create if not found” is used:

The attribute name is the identifiable attribute of fair. There is no name for the object Music
fair 2015 in the import table. If we import the table this way, an error message is output:

After the import, we now see that the import caused two objects to be omitted that did not
have a counterpart in the import table. The date was updated for Music fair 2016:

Users’Manual 5.7
146/191

When attributes are synchronized, the following applies: When an existing attribute is not
given a value by an import, it is deleted for the corresponding object of the import table. If
the existing attribute has a different value to the import table, it is updated, even when it is
allowed to occur several times. If the attribute does not yet exist, a new one is created.
When relations are synchronized, and they are not given a value, they are deleted for the
corresponding object. If the existing relation has a different value to the import table, it is
updated. If the target object does not yet exist in the database, a new one is created, provided
that a corresponding import setting has been assigned to the target object. If the target
object cannot be created as a new one, because, for example, the import setting “Update”
was assigned, an error message appears notifying us that the target object was not found
and will not be created.

1.5.1.6 Table columns
When it comes to mapping database queries, the columns that are available for import are
specified by the database tables and/or the Select statement. When mapping files, it is pos-
sible adopt the columns with the “Read from data source” button from the file. But you
can also specify them manually. In that case you can choose whether to create a standard
column or a virtual property.
If you want to export from the Knowledge Graph you have to enter the columns manually.
You can export only standard columns, not virtual columns.
Virtual table column / virtual property
Virtual columns are additional columns that allow you to use regular expressions to trans-
form the contents we find in a column of the table to be imported. Example: Let s assume
that “a.d.” is appended to all the years in our import table. We can correct this by creating a
virtual column that adopts only the first 4 characters from the year column.
We can also define virtual properties during export.
We simply write the expressions into the column header (into the name of the column).
During the process, partial strings enclosed in pointy brackets <...> are replaced according
to the following rules, with n, n1, n2, ... representing the contents of other table columns with
the column number n.

Expression Description Example Input Output
<np> Print output of content

of column n
Hits: <1p> 1 (inte-

ger)
none
(string)

Hits: 1

Hits: none

Users’Manual 5.7
147/191

<ns> Output of string in col-
umn n

Hello <1s>! ’Peter’ Hello Peter!

<nu> Output of string in col-
umn n in upper case

Hello <1u>! ’Peter’ Hello PETER!

<nl> Output of string in col-
umn n in lower case

Hello <1l>! ’Peter’ Hello peter!

<ncstart-stop> Partial string from posi-
tion start to stop from
column n

<1c3-6>
<1c3>
<1c3->

Columns olum
umn
lumns

<nmregex> Test whether the content
of column n matches
the regex regular expres-
sion. The following ex-
pressions are only eval-
uated if the regular ex-
pression applies.

<1m0[0-9]>hi

<1m$>test

01
123
(blank)
123

hi
(blank)
test
(blank)

<nxregex> Test whether the content
of column n matches
the regex regular expres-
sion. The following ex-
pressions are only eval-
uated if the regular ex-
pression does not apply.

<1x0[0-
9]>hello

01
123

(blank)
hello

<neregex> Selects all hits for regex
from the contents of col-
umn n. Individual hits
are separated by com-
mas in the result.

<1eL+>

<1e\d\d\d\d>

HELLO
WORLD
02.10.2001

LL,L

2001

<nrregex> Removes all hits for
regex from the contents
of column n

<1rL> HELLO
WORLD

HEO WORD

<ngregex> Transmits the contents
of all groups of the regu-
lar expression

<1g\+(\d+)\-> +42-13 42

<nfformat> Formats numbers, date
and time specifications
from column n accord-
ing to the format format
specification

<1f#,0.00>

<1fd/m/y>

<1fdd/mmm>

3.1412
1234.5
1 May
1935
1 May
1935

3.14
1234.50
1/5/1935

01/May

Users’Manual 5.7
148/191

Table columns can also be referenced independently from their column number by using
specially defined identifiers. The advantage in this case is that the allocation is not lost if the
column order is changed in the import table.
The identifier for the relevant column of the import table is entered in the column with the
heading Identifier in the column definition table. These columns are referenced by creating a
virtual table column that is given the identifier as its table column heading (see example 2).

Ex-
pres-
sion

Description Ex-
am-
ple

In-
put
Out-
put

<$name$expr>Reference to a column by means of a unique column identifier name and
subsequent transformation by means of the expression.
The $ characters are a functional component of the identifier syntax.

<$Name$u>’mp3’MP3

For more information on how to use regular expressions (regEx), see https://regex101.com/.
Example 1: Use of expressions (reference via column number)

Let s assume we have an import table containing concrete objects without a name. However,
we want these objects to be modeled as separate objects in our data model. Example: for a
load point, column 88 contains its main value, which is torque. So we enter the expression
load point <88s> as the definition of our virtual column that will represent the name of this
load point. The resulting name for a load point with a torque of 850 would therefore be “load
point 850”.
We can also use the virtual property to create a username consisting of the first 4 letters
of the first name and the last name. If the person is named Maximilian Mustermann and
we define the virtual column with the relevant expression <1c1-4><2c1-4>, the result is
“MaxiMust”.
The virtual property can also be used to create an initial password for a user during import.
The expression could be Pass4<2s>. The resulting password for Maximilian Mustermann
would be “Pass4Mustermann”.
A rather extensive example shows how the virtual property can be used to assign objects to
the correct direct top-level group:

The three right columns are virtual columns.

Users’Manual 5.7
149/191

<1mCD>: The number of the top-level group of the object is only written to the first of the
virtual columns if the term “CD” (for compact disc) occurs in the first column for the object.
<2c1-3>000: The number to be written to the column consists of the first three characters of
the second column and three zeros.
<1xCD><1xMD>: Only if the first column for the object does not contain "CD" or "MD", the
content is written to the column.
<2c1-4>00: The number to be written to the column consists of the first four characters of
the second column.
Playlist Summer 2019: This expression is written to the column for all objects.
Example 2: Use of individual identifiers (in combination with regular expressions)
In the following example, the contents for the Media column are transformed into upper-
case letters and into filename extensions by means of virtual columns: Column 6 uses a
reference per column number, column 7 uses a reference per column identifier.
To set up columns with virtual values, do as follows:
Enable the editing of columns first
Add the identifier name for the column (the identifier "media" always will stick to the column
with the title "Media")
Click on the "Add column" button
Choose the virtual property
For the heading, enter the column identifier in combination with the regular expression
To ensure that the current data is loaded, click on "Read from data source"
Click on "Show table" to see the result

A click on the "Show table" button shows the preview with the transformed column entries:

Users’Manual 5.7
150/191

The following figure shows the effect of swapped columns in an import table: If only column
numbers are used like in <1u>, the wrong column is accidently transformed; if an identifier
is used with a downstream regular expression like in <$media$m(mp3|ogg)>, the content is
still referenced correctly an therefore transformed into the correct virtual value:

Functioning and sequence of regular expressions
The previously shown regular expression work as follows:
• The regular expression "m(mp3|ogg)" matches all entries either containing "mp3" or
"ogg".
• The letters "*." outside the parentheses simply will be added to the result in order of
their appearance.
• The regular expression <$media$l> transforms all letters into lower case letters.

For the sequence of the regular expressions, it is important to set the filtering regular expres-
sion before the transforming regular expression:
<$media$m(mp3|ogg)> filters the entries which will be transformed by <$media$l> after-
wards.
The complete regular expression<$media$m(mp3|ogg)>*.<$media$l> returns the intentded
result, whereas another sequence of the expressions *.<$media$l><$media$m(mp3|ogg)>
result into all entries being transformed. Because the transforming expression works like an
immediate output, the filtering expression it is not obeyed anymore, leading to the rather
unusual music filename extensions *.lp, *.cd or *.md:

Users’Manual 5.7
151/191

1.5.1.7 Configuration of further table oriented data sources
Databases
The database, user and password must be specified in the mapping for a PostgreSQL, Oracle
or ODBC interface.
Database specification
The database specification consists of the name of the host, the port, and the name of the
database. The syntax is:

Database system Database specification
PostgreSQL hostname:port_database
Oracle //hostname:[port][/databaseService]
ODBC Name of the configured data source
MySQL Separate configuration of database and host name

Configure user name and password
The user name and password are specified as stored in the database. Under the Table option
it is possible to specify the table to be imported. However, for import there is also the option
of going to the “Query” option and formulating a query that specifies which data are to be
imported.

Encoding
In case of PostgreSQL mapping, it is possible to specify the encoding on the “Encoding” tab.
Special requirements of the Oracle interface
The function for direct import from an Oracle database requires that certain runtime libraries
are installed on the computer performing the import.
What is required directly is the “Oracle Call Interface” (OCI), and it is required in a ver-
sion that, according to Oracle, matches the database server to be addressed. That means
that the OCI in version 11 must be installed on the importing computer in order to ad-
dress an Oracle 11i database. The easiest way to install the OCI is to install the “Or-

Users’Manual 5.7
152/191

acle Database Instant Client”. The “Basic” package version is sufficient. The client can
be obtained from the company operating the server, or from Oracle after registering at
http://www.oracle.com/technology/tech/oci/index.html.
After the installation, it must be ensured that the library can be found by the importing client,
either by placing it in the same directory or by defining environment variables that match the
relevant operating system (documented for the OCI).
Depending on the operating system on which the import will be executed, further libraries
are necessary, and these are not always installed.
• MS Windows: next to the required “oci.dll”, two further libraries are required: ad-
vapi32.dll (extended Windows 32 Base-API) and mscvr71.dll (Microsoft C Runtime Li-
brary)

Apart from the XML import/export, all imports/exports are table-based and differ only in
terms of the configuration of the source. For a description of a table-oriented display, you
can consult the Example of the CSV file.

1.5.1.8 Mapping of an XML file
The principle of XML files is to make the different details for a record explicit by means of tags
(<>) (and not by means of table columns). Accordingly, tags are also the basis for display
when XML structures are imported to i-views.
Example: Let s assume that our list of songs is available as an XML file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Contents>

<Album type="Oldie">
<Title>Revolver</Title>
<Song nr="1">

<Title>Eleanor Rigby</Title>
<lengthSec>127</lengthSec>
<Artist>The Beatles</Artist>
<Topic>Mental illness</Topic>
<Mood>Dreamy</Mood>
<Mood>Reflective</Mood>

</Song>
[...]

</Album>
[...]

</Contents>

If we want to import this XML file, we choose the “XML file” data source when selecting the
type, which causes the editor for the import and export of XML files to open. Even the spec-
ification of the file location is different than in the editor for CSV files. We can now choose
between a local file path and specification of a URI.
JSON preprocessingmakes it possible to convert a JSON file to XML before the actual import.
You can choose Transform with XSTL if you want to convert the XML data from the selected
XML file to different XML data before the import, for example in order to change the structure
or further separate individual values. Use the “Edit” button to open the XML file, where you
can then define the changes by means of XSLT.
Once the file has been selected, use the “Read from data source” button to read out the XML

Users’Manual 5.7
153/191

structure, which is then displayed in the right-hand window.

We want to import the individual songs on our list. So we create a new object mapping and
use the “Map to” button to select the<Song> tag. In contrast to a CSV import, where only the
attribute values have an equivalent in the CSV table and where an individual row represents
an object, which means that only the attribute values need to be mapped, semantic objects
are here mapped by the XML structure. Therefore a corresponding tag of the XML file must
be specified for each of the objects to be mapped.

Users’Manual 5.7
154/191

As our example shows, the tags are not always unambiguous without context: <Title> is used
for both album titles and song titles. The object type only becomes clear in combination with
the surrounding tag. Often the context of the XML structure and the context of the mapping
hierarchy are synchronous: As we have already specified that the objects should be mapped
to the <Song> tag, the XML structure makes clear which <Title> tag we actually mean when
we map <Title> with the name attribute of songs. Where the mapping hierarchy and the tag
structure are not parallel, we can use XPath to form strings in the XML import in addition to
the tags occurring in the XML file.

Users’Manual 5.7
155/191

As with the CSV import, it is necessary to use the “Identify” tab to specify for object mapping
which attribute values should be used to identify the object in the Knowledge Graph. The first
created attribute for an object is once again used automatically as the identifying attribute.
Options with XPath expressions
Let s assume we only want to import songs from albums with the “Oldie” music style. In
our XML document, the information for the music style is specified directly in the album
tag under type="...". That means we have to use the editor to define an XPath expression
describing the path in the XML document that contains only songs from oldie albums. The
right-hand lower section of the editor contains a field for adding XPath expressions.

The correct XPath expression is:

//Album[@type="Oldie"]/Song

Explanation in detail:

Users’Manual 5.7
156/191

//Album Selects all albums; their position in the document is irrelevant.
Al-
bum[@type="Oldie"]

Selects all albums of the “Oldie” type

Album/Song Selects all songs that are sub-elements of albums.

We can now use this expression to define an equivalent for the object mapping of songs.

XPath also offersmany other useful selection functions. We can, for example, select elements
by their position in the document, use comparative operators, and specify alternative paths.
Basic tips for the XML import
• Use one absolute path.
• Express all other paths relatively to the absolute path.
• An incremental import only is possible if no cross-references are going to be imported.
If so, define the node with the absolute path as a partitioning element (see option on
the second tab of the import mapping).
• If the structure branches out into the depth, an import mapping going from deeper level
towards upper level is recommended, since there is only one parent element instead of
several child elements.
• In case ofmore complex XML documents, it can be beneficial to import all objects includ-
ing their identifying attributes first and the relationships in a second step. This ensures
that all objects can be found for building relationships.

Alternative: XML import mapping for RDF files

If the schema in the semantic network is too specific for the existing RDF file or if the RDF
file is too specific or the rdf schema is missing so that it cannot be imported by the import
mechanism correctly, we can use the XML import mapping for specified import.

In most cases, we will need to use XPath expressions for dedicated value assignment. Pay at-
tention that for the XML import mapping, an interactive step-by-step import is not available.

Note: For Xpath expressions, the namespace (built up on to the qualifier) is not considered

Users’Manual 5.7
157/191

by the system for import mapping.

Input RDF-XML XPath Meaning
// Top-level of the

RDF
../ One level above
../../xyz Two levels

above, from
there the node
below called
“xyz”

<rdf:label> /label/ Tag “label”
<rdf:prefLabel xml:lang="en">
Example
</rdf:prefLabel>

prefLabel[@lang=”en”] Node with at-
tribute and
certain attribute
value. Output
= "Example".

ances-
tor::termEntry/attribute::id

Superordinate
node on any
level with name
(“termEntry”)
and attribute
(“id”)

/myparent/mychild[text()] Text between
certain tags

1.5.1.9 Further options, log and registry
1.5.1.9.1 Further options at the import
In the “Options” tab, the following functions are available for selection irrespective of the data
source:

Users’Manual 5.7
158/191

Import in one transaction: This is slower than an import with several transactions and
should only be used if a conflict would occur during an import with several transactions
because many people are working in Knowledge Builder at the same time or because you
want to import data where it matters that individual pieces of data are not viewed separately
from each other.
Example 1: Every hour, an import is executed with the machine load status. The combined
load values must not exceed a certain value as that could result in a power failure. To ensure
this rule can be taken into account (e.g. by means of a script), all values must be viewed
jointly and then imported.
Example 2: An import is executed with persons of which no more than one person may
have a master key because only one master key exists. The import must also be performed
in one transaction here because several transactions could result in missing the error that
the attribute for the master key has been set for two persons.
Use several transactions: Default setting for fast import.
Journaling: Journaling should be used if very large amounts of data are deleted or modified
in one import. The changes or deletions for these entries are only to be made to the index
after 4,096 entries (the figure is variable). This speeds up the import because the index does
not have to be used for every single change/deletion. Instead, these changes are copied to
the index after a maximum of 4,096 changes.
Update metrics: Metrics are supposed to be updated if the import significantly affects the
number of object types or property types, that is, if a large number of objects or properties
of a type are added to the Knowledge Graph. If the metrics were not updated, this could
negatively affect the performance of searches in which the corresponding types play a role.
Trigger activated: You can use this checkmark to determine if the trigger is supposed to
be activated or not during import. If you wish to apply one trigger but not another one,
you have to define two different mappings with the corresponding semantic elements. For
information on triggers, refer to the Trigger chapter.
Automatic name generation for nameless objects: Enables the automatic name genera-
tion for nameless objects.

If there is a table-oriented source, we can make the following settings:

Import entire table: Even though it can take longer to import the entire table at once, it
makes sense to select this option if there are forward references, i.e. if relations are to be
drawn between the objects to be imported. In this case, both objects must already be avail-

Users’Manual 5.7
159/191

able, which is not the case if the table is imported one row at a time. Furthermore, the
progress display is more precise than for importing one row at a time.
Import table row by row: A table should always be imported one row at time when the
table contains no source reference since this procedure speeds up the import.
Separators within a cell: Refer to the chapter Mapping several values for an object type for
an object.

If we have an XML-based data source, the following functions are available:

Incremental XML import: The XML import is performed step-by-step. These steps are spec-
ified by the partitioning element.

Import DTD: Imports the document type definition (DTD).

1.5.1.9.2 Log
The functions in the “Log” tab allow changes that are made upon import to be tracked.

Place generated semantic elements in a folder: If new objects, types or properties are
generated by the import, they can be placed in a folder in the Knowledge Graph.

Users’Manual 5.7
160/191

Place changed semantic elements in a folder: All properties or objects with properties
that were changed by the import can be placed in a folder.
Write error messages to a file: Errors can occur during import (for example, there may
have been an identifying attribute for several objects, which is why the object could not be
identified uniquely). These errors are displayed in a window following import by default,
and the option of saving the error log is provided. If this is to occur automatically, then a
checkmark can be placed in the box and a file can be specified here.
Last import / Last export: The date and time of the last import performed and the last
export performed are displayed here.

The “Log” tab is also available in the case of the individual mapping objects. When necessary,
a category can be entered for log entries here. Moreover, it is possible to define that the
value of the corresponding object/corresponding property should be written into the error
log. This is not activated by default, in order to avoid revealing sensitive data (e.g. passwords).

1.5.1.9.3 Registry
The function “Set registry key” can be found under the “Registry” tab, and can be used to
register the data source for other imports and exports.
The function “Link existing source” allows a registered source to be used again.
“References” shows other places where a data source is being used:

Users’Manual 5.7
161/191

1.5.2 Attribute types and formats
One frequent job of attribute mapping is to import specific data from concrete objects, for
example from persons: Telephone number, date of birth etc.
For the import of attributes for which i-views uses a specific format (e.g. date), the entries
of the column to be imported must be provided in a form that is supported by i-views. For
example, a string in the form abcde... cannot be imported to an attribute field of the date
type; in this case, no value is imported for the corresponding object.
The following table lists the formats that i-views supports during the import of attributes. A
table value yes or 1 is, for example, imported correctly as a Boolean attribute value (for a
correspondingly defined attribute), while a value such as on or similar is not.

Attribute Supported value formats
Selection The mapping of import to attribute values can be configured

with the “Value allocation” tab.
Boolean The mapping of import to attribute values can be configured

with the “Value allocation” tab.

Users’Manual 5.7
162/191

File It is possible to import files (e.g. images). For this to happen,
either the absolute path to the file must be specified, or the
files to be imported must be in the same directory (or a subdi-
rectory that needs to be specified) as the import file.

Date • <day><monthName><year>, e. g. 5 April 1982, 5-APR-
1982
• <monthName> <day> <year>, e. g. April 5, 1982
• <monthNumber> <day> <year>, e. g. 4/5/1982

The separator between <day>, <monthName> and <year>
can be a space, a comma or a hyphen, for example (but other
characters are also possible). Valid month names are:
• January , February , March , April , May , June , July , August
, September , October , November , December
• ’Jan’, ’Feb’, Mar’, ’Apr’, May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, Oct’, ’Nov’,
Dec’.

Please note: Two-digit years are expanded to 20xy (so 4/5/82
becomes 4/5/2082).
If mapping is set to “Freely definable format”, the following
tokens can be used: YYYY and YY (year), MM and M (month
number), MMMM (name of month), MMM (abbreviated name
of month), DD and D (day)

Date and time For date and time see the corresponding attributes. The date
must come before the time. If the time is omitted, 0:00 is used.

Color Import not possible.
Fixed point figure Import possible.
Integer • Integers of any size

• Floats (separated by a point), e.g. 1.82. The figures are
rounded during import.

Internet link Any URL possible.
Time <hour>: <minute>: <second> <am/pm>, e.g. 8:23 pm (be-

comes 20:23:00) <minute>, <second> and <am/pm> can be
omitted.
If mapping is set to “Freely defined format” , the following to-
kens can be used: hh and h (hour), mm and m (minute), ss
and s (second), mmm (millisecond)

String Any string. No decoding is performed.

Boolean attributes and selection attributes
Selection or Boolean attributes can only assume values from a specified set; for selection

Users’Manual 5.7
163/191

attributes this is a specified list, and for Boolean attributes this is the value pair yes/no in
the form of a clickable field. When importing these attributes, you can specify how the val-
ues from the import table are translated to attribute values of the Knowledge Graph. One
option is to adopt the values as they are listed in the table; if they do not correspond to any
possible attribute values defined in the Knowledge Graph, they are not imported. The other
option is to specify value allocations between table values and attribute values, which are
then imported.

1.5.3 Configuration of the export
The export of data from a Knowledge Graph into a table is prepared in the same editor and
in the same way as the import.
1. A new mapping is created in a table mapping folder in the main window.
2. In the table mapping editor, the file to be generated is specified.

The difference to the import is that the columns are not imported from the table now but
have to be created in the table mapping editor. Since the import and export editor are one
and the same, you first have to select whether a new column to be created is a standard
column or a virtual property. However, virtual properties cannot be used for export.
Exporting structured queries
It is possible to export the result of a structured query. This procedure makes sense if only
certain objects that have been restricted by a search are supposed to be exported. Let s
assume, for example, we want to export all bands that have written songs that are more the
10 min long. To do this, we first have to define a structured query that collects the desired
objects.

We then access this structured query from the configuration of the export. To do this, we
select the mapping of a query rather than an object mapping in the mapping configuration
header. The structured query can only be accessed with a registration key.

This has the effect that only the results of the structured query are exported. For these
objects, we can now create properties that are to be included in the export: e.g. the year
the band was founded, members and songs. However, we might not want to export all of

Users’Manual 5.7
164/191

the songs of the bands we have thus compiled but only those songs that also match the
search criterion, which is songs longer than 10 min in our example. To do this, we can assign
identifiers to the individual search conditions in the structured query. These identifiers in
turn can be addressed in the export definition.

Exporting collections of semantic objects
Collections of semantic objects can also be exported. These also need a registration key,
which you can set under TECHNICAL -> Organizing folder.

Exporting the frame ID
The mapping of the frame ID enables us to export the ID of a semantic element assigned in
the Knowledge Graph. To do this, we simply select the object, type or property for which we
need the ID and then choose the “New mapping of Frame ID” button:

We can also decide if we want to output the ID in string format (ID123_456) or as a 64-bit in-
teger.

Export via script
Finally, we have one additional powerful tool for the export: script mapping. For further
information on this subject, refer to the “Script mapping” chapter.

Users’Manual 5.7
165/191

Export actions for database exports

Mapping the properties of an object for an export into a database takes place exactly like
mapping for an import and all other types of mapping. The only difference is that the export
action has to be specified for the export. This specifies which type of query is to be executed
in the database. Three export actions are available:
The following actions are available in the selection dialog that opens:
• Create new data records in table: New data records are added to the database table.
This action corresponds to an INSERT.
• Update existing data records: The data records are identified via an ID in the table.
They are only overwritten if the value has changed. If there is no suitable data record, a
new one is added. This action corresponds to an UPDATE.
• Overwrite table content during export: All data records are first deleted and then
written again. This action corresponds to an DELETE on the entire table followed by an
INSERT.

1.5.4 RDF-import and -export
RDF is a standard format for semantic data models. We can use the RDF import and export
to exchange data between the semantic graph database and other applications, and also to
transport data from one i-views semantic network to another.
During an RDF export, the entire semantic network is exported into an RDF file. RDF import,
in contrast, is interactive and selective. That is, we can specify at schema level as well as for
individual objects and properties what is supposed to be imported and what not.
Reconciliation from RDF with the existing objects in the semantic network
During import, types and their instances can be identified by means of the following proper-
ties:
• rdf:about
• RDF-URI-Alias: Allows the assignment of different URIs to a semantic element
• rdf:ID-prefix
• rdf:id: Formore information, see https://www.w3.org/TR/rdf-syntax-grammar/#section-
Syntax-ID-xml-base
• i-views Frame-ID: Depending on the settings of the previous export; only applicable if
Frame-ID of the element in source network and target network are identical

If the RDF data originates from the same schema as the network into which it is imported,
e.g. from a backup copy, the RDF import automatically assigns objects and object types by
means of their ID.
There are two possibilities/stages for determining the import mapping of RDF data:
• Using global settings: The basic settings allow to determine whether schema is allowed
to be changed or not, regardless of the kind of types. Identified objects always are going
to be updated, non-identifiable objects are going to be created.
• Secifying detailed settingsmanually: When due to external RDF files a type-dependent

Users’Manual 5.7
166/191

correction of the assignment is needed, both the import strategy and the assignment for
each type can be specified manually. Since this manual kind of mapping can be error-
prone and exhaustive for extensive RDF files, it is recommended to prefer the import by
using global settings and adequate RDF-URI assignment.

If the data originates from another source, the default setting of the import is into a separate
subnet. Pay attention that a lossless export and import of metadata structure is not always
possible, especially regarding meta relations.

1.5.4.1 Basic principles
In this section we have a look on the basic principles of RDF and the special cases to
be obeyed for import mapping. For further information about the RDF standard, see:
w3c.org/rdf.
In general, the i-views Knowledge-Builder supports XML-RDF.
For identifying the content within the RDF file and the Knowledge-Builder as well, the RDF-URI
is used. It comprises the base URI (= base URL) and the RDF-ID:
[RDF-URI] = [Base URI] + [RDF-ID]

TheBaseURI syntax in RDF is constructed by the "xml:base" prefix, like in "xml:base=http://example.org/".
The base "base" is only a namespace for individual domains; the qualifier "xml" is for read-
ability reasons in terms of XML transportation, which is irrelevant for import.
A relative URI in RDF is built up by the syntax "rdf:about". Attribute values are most likely
text between tags: <rdf:prefLabel xml:lang="en">Example</rdf:prefLabel>, surrounded by
the translation layer identified by "xml:lang". Relations will be formed by RDF-entries like
"rdf:resource". IDs will only be created via import in the Knowledge-Builder if they are lit-
erally written in the RDF file. The RDF-ID is no absolute identifying characteristic! It is not
recommended to set RDF-IDs manually in the RDF file, since duplicate values can lead to
data being mislocated.
Global settings

The Knowledge-Builder Base URL is defined in the settings menu and it is valid for both
import and export:

Users’Manual 5.7
167/191

“Additional namespaces” is for export only.
Note: Always use a local copy of the network for trying out RDF-Import. If all settings led to
a successful import, then make the import on the real instance.
Possible issues
• In most cases when importing external RDF (RDF which didn t have been created by the
Knowledge-Builder itself out of the same knowledge network), the namespaces possibly
won t fit. This results into lots of types within separate main types being created in the
network.
Therefore we can prepare the import as described at the end of this section.

• In RDF, the definition and assignment of properties can lead to creation of many objects
in the network which normally should be formed into an attribute value of some certain
object instead.
Therefore a manual correction of the type assignment in the mapping or an alternative
XML import using XPath expressions (Xpath 1.0) might be needed.
• Don t choose the option “Identify objects with global URI also by local ID” if the base URL
in the RDF differs from the Knowledge-Builder base URL. Furthermore, some RDF-ID in
the RDF file could be identical by accident with some existing ID in the network, resulting
into the object in the network being overwritten!
Always use the RDF-URI for identification.

• If your RDF file doesn t contain a base URL, the file path of the RDF will be used as the
base URL instead.
This can be checked by opening the import dialog first. We then can add the RDF-URI or
RDF-URI-Alias accordingly and then check the assignment again by opening the import
dialog once again.

Users’Manual 5.7
168/191

Preparation before import
Imports can be prepared regarding type assignment in the case that the RDF files contains
foreign base URLs. Because RDF imports can lead to schema changes, it is always recom-
mended to try the RDF import on a local copy of the knowledge-network before. To do so,
we continue as follows:
1. Before importing, first create the scheme manually (object types, attribute types and
relation types).

2. For the types, add the RDF properties by clicking on “Add attribute or relation” :

RDF-URI-Alias: Further attribute, if the element is being fed by several RDF with differ-
ent URIs
rdf:about: Attribute for “rdf:about”
rdf:ID:
rdf:ID-prefix:

3. Open import dialog and check import mapping.
4. If the adjustments lead to the intended mapping, start the import and check the result.

Users’Manual 5.7
169/191

1.5.4.2 RDF import
For accessing the RDF import mechanism, go to the global actions settings and choose Tools
> RDF > RDF-Import.

A dialog opens for choosing the import file:

Options:
• Import referenced resources:
If this option is chosen, all referenced resources specified in the RDF file are going to be
imported additionally.
Note: Be aware that the referenced resource itself can contain further references, lead-
ing to much more data being imported than initially intended.
• Ignore HTTP errors:
The Knowledge-Builder will return error messages if the RDF namespace label is missing
after the URL; only the namespace http-URL at the top will be considered.
• Identify objects with global URI also by local ID:
This option only makes sense if the rdf to be imported is originated from the same
knowledge network for which it is intended to be imported. Importing RDF with only
considering the ID can lead to data being overwritten when the RDF is from another

Users’Manual 5.7
170/191

domain and the IDs match accidently. This option does not make sense when the RDF
base URL differs from the knowledge network base URL.

Note: When importing RDF, for every unknown namespace a separate main type will be
created in the knowledge network. The assignment of RDF content to dedicated knowledge
network types depends on how the information is represented in the RDF file.
Setting the import options
1. Manual supertype mapping:
Per default, the RDF-URL (RDF ontology) will be used as supertype assignment.
For every type within the RDF, you can choose the supertype mapping in the semantic
network manually if a different type assignment is needed:

In order to be sure about which supertypes will be created by the import, you can check
this in the “Schema changes” tab. By clicking on “Show in tree”, you can quickly jump to
the location of a type in the hierarchy structure. The “Legend” tab explains the import
mapping symbols.

2. Import options:

a. Allow schema changes: Since you don t want a file to change the schema, it is rec-
ommended to disable this option
b. Avoid duplicate properties: Because in RDF properties cannot be assigned with an
ID, a unique identification of properties and their values within the knowledge network
is not possible when importing RDF without krdf. When you want to import a foreign
RDF without krdf, it is recommended to enable this option.
When transferring RDF between knowledge networks, knowledge network specific at-

Users’Manual 5.7
171/191

tributes can be identified by means of the enhanced krdf syntax. This includes proper-
ties for view configuration, REST configuration, attribute values, relation targets, meta-
properties on relations etc. In this second case, it might be needed to disable the op-
tion. Pay attention that krdf adds the internal frame IDs for instances and properties
whereas external IDs have no impact on identification of such content. The Knowledge-
Builder automatically creates unique frame IDs when new elements are created within
the knowledge network - either by an import or by the user.
c. Allow deferred relation creation: When importing data from public resources, the
attribute “reference to URL” can be created as a substitute reference for (temporarily un-
available) dependencies. The attribute then can be used for re-identification in deferred
imports. This might be useful when empty parts including URL without type definition
exist within the RDF file.
d. Triggers activated: Normally, triggers are not activated during RDF import. If you
nevertheless wish triggers being activated, enable this option.
e. Import qualifier/namespace: This option only makes sense when re-importing RDF
that has been previously created out of the same network. If you import a RDF with a
foreign namespace, skip this option.

3. Log options:
a. Create folder with imported objects: This option allows you to inspect the im-
ported objects within a folder that will be created in the working folder.
b. With relation targets: When the RDF file contains new objects with relations to tar-
gets that already exist in the knowledge network, the relation targets will be included in
the folder of imported objects.

4. Transaction options:
a. Import in a single transaction: This is the most common import method.
b. Use multiple transactions for import: This option is recommended when the RDF
file contains a huge amount of content or when the connection to the external resource
might be weak or unstable. When an error occurs, the amount of content affected by a
rollback will be less due to the increased import steps in terms of transactions.

5. If you checked all settings, start the import and check the result.

Alternative: XML import mapping
If the schema in the semantic network is too specific for the existing RDF file or if the RDF
file is too specific or the rdf schema is missing so that it cannot be imported by the import
mechanism correctly, we can use the XML import mapping for specified import. For more
information, see chapter "XML Import Mapping".

Further RDF import/export possibilities
RDF files also can be imported or exported via the REST interface by means of a JavaScript
mapping. In this case, only global options for import are available as specified in the
JavaScript API documentation:
http://documentation.i-views.com/5.4/javascript-api/$k.RDFImporter.html.

Users’Manual 5.7
172/191

Exceptions: Within i-views content, URIs are generated automatically for the semantic ele-
ments when being created in the knowledge network.

1.5.4.3 RDF export
Exporting the whole semantic network as RDF
On the global actions menu, select Tools > RDF > RDF export.

Exporting parts of the network
It is possible to export just a part of the knowledge network, for example:
• Listed elements from an objects list
• Elements from within a semantic elements folder
• Elements from within a graph editor bookmark

If you wish to export listed elements without collecting them in a folder:
• Select the list elements to be exported. Open the context menu by means of a right
click. Then choose “RDF export”.

For collecting the elements to be exported, there are severely possibilities:
1. Create a semantic network elements folder and add the elements:
a. In your private or working folder, create a semantic network elements folder.
b. Go to the objects list of your choice an add the elements to the folder by dragging &
dropping them.
-or-
Select the elements in the object list and open the context menu by means of a right
click. Then choose “Store selected elements in folder”.

2. Right-click on the semantic network elements folder and choose “RDF export”.
If you wish to put all selected list elements into a semantic network elements folder:
1. Open the context menu bymeans of a right click. Then choose “Copy semantic elements

Users’Manual 5.7
173/191

to new folder”.
2. Right-click on the semantic network elements folder and choose “RDF export”.

If you have already created a bookmark of a graph editor view, you simply can export
them: Right-click on the bookmark and choose “RDF export”.
Note that only the content of the selection (of the folder or bookmark) will be exported. In
terms of an object, this will be the cluster containing the attributes and the relation halves
directly attached to the contained object only.
Note: When no base URL is specified in the global settings of the Knowledge-Builder, the
path name of the RDF export file will be used as base URL instead.
RDF Exporting settings

Syntax
• Use OWL: Since OWL (web ontology language) allows more options than the conven-
tional RDF syntax, this option is always recommended except the case that the RDF is
going to be reused for another system which does not accept OWL.
• Use KRDF: The KRDF syntax is i-views specific. It allows more enhanced constructions
or representations compared to RDF or OWL like the following:
o Instances that have several supertypes
o Domains that consist of an intersection of supertypes
o Frame IDs of semantic knowledge network elements

Scope
Note: The scope options comprise only schema (types) of the whole export
• Export schema only: This is a simplified feature for ensuring only to export schema of

Users’Manual 5.7
174/191

the Knowledge Graph and not Instances.
• Export labels: If activated, labels will not be exported as an attribute but in forms of a
label literal with the syntax <label xml:lang=”eng”>.
• Export meta properties: In terms of official RDF specification, meta properties are
out of scope. Nevertheless, meta properties can be regarded as a construct with state-
ments about statements, as described in the reification rules of the RDF specification.
Therefore, this option is useful when re-importing into an i-views semantic knowledge
network is intended.
• Export extensions: This option allows the export of extensions of semantic objects.
• Enhanced comments: When enabled, XML comments with real name will be created.
The exported RDF file will contain comments for dividing up into sections for objects,
related objects and referenced schema hereafter, including statements about the rela-
tionships from each individual object to the related object.

IDs
• Local IDs (rdf:ID): This option only makes sense when re-importing the resulting rdf
into the same knowledge network or into a highly similar knowledge network with the
same namespace and correct IDs. If the target network accidently has existing elements
with same ID, the elements might be overwritten without further recognition.
• Use full URLs (rdf:about): This option should be preferred, since the full RDF URL con-
tains the namespace and thus ensures correct mapping when reimporting the RDF, pro-
vided the base URL of both RDF file and settings being identical.
• Create attributes for generated URLs and IDs:
• Do not use stored URLs and IDs:

Frame-IDs
• Use frame URLs (krdfframe): This option is only available in combination when used
with full URLs instead of IDs. It provides internal URLs built up by frame IDs of the
semantic knowledge network elements additionally.
• Export Frame-IDs of types and objects: Exporting frame IDs only is useful in the case
if duplicating parts of the existing network is intended. Since frame-IDs change in vari-
ous cases and differ highly due to their randomized creation (229 possible values), they
cannot be used for another knowledge network.
Frame-IDs keep the same when:
o Changing the type of an instance
o Downloading a network
o Updating a network
Frame-IDs change when:
o Changing relations into single-sided relations
o Another instance of knowledge network is used
o Creating objects, even if they will be given identical properties

• Export Frame-IDs of attributes and relations: Exports frame-IDs of properties (at-
tributes and relations) as well. As for exporting frame-IDs of objects and types, this
option is useful for (partial) duplicating networks, but not for reuse into foreign net-
works

Users’Manual 5.7
175/191

1.5.5 External Index in Elasticsearch
Elasticsearch is an open-source search engine based on Lucene, designed for indexing,
searching and analyzing large volumes of data. Its strength lies primarily in value and full-text
searches. In i-views, it is possible to export data from the semantic network to Elasticsearch
using a Mapping. This creates an external Index that can be used with numerous search
functions and options. For more information, the official website of Elasticsearch can be
found here.

1.5.5.1 Creating a data source
To utilize the interface from i-views to Elasticsearch, the first step is to create a new data
mapping. For this purpose, in the working folder, select the ’Elasticsearch’ data source using
theNewmapping of a data source button, and define a name (see 1.5.1.2). After confirma-
tion, the configuration view will then open:

The view can be divided into four areas:
1. Mapping
2. Metadata
3. all defined fields (local schema)
4. later an overview of all fields in Elasticsearch (schema in Elasticsearch)

At first, all necessary metadata for the external index should be specified.

Users’Manual 5.7
176/191

1. (mandatory) The URL on which the external index in Elasticsearch is hosted
2. (optional) A username, if a user is defined
3. (optional) A password, if a user is defined
4. (mandatory) The preferred name of the external index

After filling out all mandatory fields, the local schema can now be defined.

1.5.5.2 Local scheme
The schema, which is initially created locally, determines how the external index will appear
on Elasticsearch. Fields are defined to specify how the data will be stored. The fields repre-
sent the columns of the external index. For each field, a name and data type must be defined
as a basic requirement. This can be done in the following view:

1. Add
Adds a new field with the specified name and data type.

2. Edit
Name, data type and modificators can be changed. Analyzers can be set as modificator
for the selected field. These will be explained in a later section (see 1.5.5.9)

3. Delete
Deletes all selected fields.

4. Import fields from data source
Overrides the local schema with the schema in Elasticsearch.

5. Export properties to data source
Uploads the local schema to Elasticsearch.

The local schema, which includes all fields, defines the structure of the external index. An
example of such a schema is as follows:

Users’Manual 5.7
177/191

After defining a new schema, the local schema can be exported to Elasticsearch by using the
arrow down Export properties to data source. This opens the view of fields in Elasticsearch
where the transferred schema is displayed:

1. Refresh (F5)
The schema is reloaded from Elasticsearch.

2. Reset all fields
The entire external index is reset. All exported data is deleted. Only the schema remains
intact.

Note: In general, handling fields requires great care, and it’s advisable to make minimal or,
ideally, no changes to them during operation. Modifying fields while an external index exists
could lead to anomalies. Therefore, significant schema changes should prompt the recre-
ation of the external index using the eraser Reset all fields.
After creating the desired schema, the next step is to define a mapping.

1.5.5.3 Mapping
The mapping defines which data will ultimately be exported to the external index. To do this,
the data source is selected in the mapping section. Then, step by step, the structure of the
mapping can be defined (see 1.5.1.3). An example of a mapping could look like the following:

If the local schema has already been created, a selection dialog will pop up for each mapping
part, allowing to choose a field:

Here, the currently created part of the mapping can be assigned to a field for export. If -
none - is selected or if there is no local schema yet, an assignment can also be made later
on. For this, a part in the mapping must be selected, and the desired field must be chosen
forMap to:

Users’Manual 5.7
178/191

After the mapping was defined and assigned to the fields in the local schema, configuring
a unique identification of the objects to be exported is essential for smooth and protracted
operation.

1.5.5.4 Identification
For a clear identification, Elasticsearch automatically generates unique IDs for every exported
Object. However, it is advisable to use the existing IDs of the objects in the semantic network
to ensure a unique identification. This establishes a direct connection between the objects in
the semantic network and the entries in the external index, making future operations much
easier.
This can be achieved by reimporting the schema from Elasticsearch after exporting the local
schema. This process reveals a new field named "_id" in the local schema, which is generated
automatically by Elasticsearch in order to store unique IDs for every entry in the external
index.

Note: The ID field should only be used for mapping unique IDs from the semantic network.
Mapping other types to this field can significantly affect the functionality of the external index
or even lead to a complete loss of functionality.
Previously, the ID field provided by Elasticsearch was only loaded into the local schema. How-
ever, a newmapping for the IDmust be added specifically for the root object of the mapping:

Users’Manual 5.7
179/191

The IDs of the objects to be exported from the knowledge network have now been added
to the mapping and assigned to the ID field. Additionally, it should be ensured that the root
objects are also identified by these IDs. When selecting the root object, in the Identify tab
under Identify object using the following mappings, only the previously added ID mapping
should be defined. If the root object is identified by one or more other attributes, these
should be deleted and only the ID mapping should be added. It should look like this:

During an export, the entries in the external index are now identified through the IDs of the
root objects defined in the mapping. This is crucial for associating objects in the semantic
network with the corresponding entries in the external index and enables additional func-
tions, such as automatic updating of the external index when data has changed internally
(synchronization).

1.5.5.5 Synchronization
In order to keep the external index current and consistant to the semantic network, before
the initial export, automatic synchronization should be activated under the Options tab:

Users’Manual 5.7
180/191

This generates a new field with the name ’_dependantIDs’ for the external index which is
used as an auxiliary index for keeping data current. In addition to that, a trigger must be
configured that activates when data in the semantic network is changed and also starts the
update process:

Afterwards a configuration view for the trigger will open where the following settings should
be configured:

1. Selecting the mapping on which the trigger should be applied on.
2. Selecting the Primary core element parameter.
3. Activating Update automatically.

After the trigger was configured, the external index will now be automatically updated when
internal data is changed accordingly.

1.5.5.6 Import and Export
At this point, an import/export can now take place. The buttons for these actions are located
above the mapping section:

1. Import
Data is imported from the external index to the semantic network.

2. Interactive import
3. Export
Data is exported from the semantic network to the external index.

4. Move up

Users’Manual 5.7
181/191

Moves up the selected part of the mapping
5. Move down
Moves down the selected part of the mapping

After exporting data to the external index, the interface between i-views and Elasticsearch
provides a variety of options.

1.5.5.7 Browser tool Elasticvue
The exported data can be viewed using the browser extension Elasticvue. The extension
supports the most popular browsers and can be downloaded from elasticvue.com/.
After successful installation, Elasticvue can be opened among the installed extensions. Upon
initial opening, a setup is required where the address, through which the Elasticsearch cluster
is running, is entered under URI. Optionally, a username and password can also be provided.
Note: The URImust be identical to the URL entered in the mapping.
After the initial setup, a redirection is performed to the dashboard, which will now appear
directly when reopening the extension. The navigation bar of the dashboard looks as follows:

Under default cluster, all existing clusters can be selected, managed, and new clusters can
be created. Additionally, the address of a cluster can be viewed here, which must be entered
in the metadata of the mapping in the Knowledge-Builder. Under Home, many more meta-
data about all clusters are displayed. Each cluster consists of multiple nodes. Information
along with a resource overview for each node can be found under Nodes. Each external in-
dex can be distributed across multiple shards, which is displayed under the Shards tab. The
most important tab for viewing the exported data is Indices, where all external indexes are
listed. Selecting an index provides a detailed overview of the exported data:

Each row shown represents an exported object from the semantic network in i-views. Since
Elasticsearch stores all data in JSON, individual records can be displayed as JSON under Show or
all data can be downloaded in this format using theDownload as JSON button. The overview
also provides the option to search the data using the search field Search, which is based on a
simplified search syntax. For more complex searches, a more intricate query can be defined
under Custom Search using JSON.

Users’Manual 5.7
182/191

Comprehensive documentation for everything related to Elasticsearch, particularly helpful
for custom searches, is available on the Elasticsearchwebsite at https://elastic.co/guide/index.html.

1.5.5.8 Queries and facets
To make effective use of the external index, Elasticsearch queries need to be configured.
Using these queries, Elasticsearch’s search functions and options can be employed to search
through the exported data and retrieve relevant results. To configure such a query, it must
be created in the working folder. A configuration view will then appear:

The configuration view is divided into four sections:
1. Data source
Here it is defined for which mapping the query should be provided. Again, the mapping must
be registered first before it can be selected.
2. Parameters
In this section, the parameters to be used for the query are defined. Additionally, the search
logic, which plays a crucial role in the query, is established here. To define logic for the query,
search criteria must be added:

Users’Manual 5.7
183/191

The selection offers the following options:
• Range - A match occurs when the value of a field falls within the specified range.
• Existance - A match occurs when the value of a field exists.
• Combination - Combines individual search criteria into a consolidated logic.
• Term - A match occurs when the value of a field is identical to the given value.
• Fuzzy - A match occurs when an indexed expression is similar to the provided expres-
sion (tolerant to swapped, modified, missing, and extra characters).

• Fulltext - A match occurs when the specified expression is found in another using full-
text search.

Depending on the selected search criterion, there are various settings in the configuration
view. With a few exceptions, these are similar, so the key settings can be demonstrated using
the example of the range criterion:

Users’Manual 5.7
184/191

1. Here, the field of the external index on which the search criterion is applied is specified.
2. In general, this is where parameters for a query can be specified. In the case of the
range criterion, for example, there are two parameters that form the upper and lower
bounds, and the option to change the comparison operators.

3. Here, the logic can be selected based on which the query operates. The following op-
tions are provided:
must - Equivalent to logical AND. A match ocurs when all search criteria are satisfied.
Increases the Elasticsearch score for a match.
should - Equivalent to logical OR. A match occurs when at least one criterion is satisfied.
Increases the Elasticsearch score for a match.
must not - Opposite of must: A match occurs when the specified value does not satisfy
the search criterion.
Filter - Equivalent to must, but the Elasticsearch score remains unaffected.

4. If enabled: Checks whether the specified parameters have already been defined in the
system. If the parameters do not exist yet, the query will not be executed.

5. Returns an empty set if the value does not exist in any entry.
6. Can be used to weight individual search criteria. The entered value (float) serves as a
factor that is applied to matches when calculating the Elasticsearch score. The default
value is 1.0. The higher the value, the more weight the search criterion carries in the
Elasticsearch score calculation.

Exceptions with additional specific configuration options include:
Term:

1. Here, a type for the search criterion ’Term’ can be selected. Possible types are:
Prefix - A match occurs when the specified search term matches the beginning of an
indexed expression (Example: Search term ’Te’ ->Match with ’Term’).
Wildcards - Wildcards can be used in the search, replacing any parts of a term (Exam-
ple: Search term ’Wild*’ ->Match with ’Wildcards’ | The asterisk serves as a placeholder
for any number of letters).
Regular Expression - Makes use of regular expressions for searching (see 1.3.6.2).
Equal - A match occurs only if the specified search term is identical to the indexed ex-
pression.

Users’Manual 5.7
185/191

2. If disabled: A search term is considered identical to an indexed expression even if the
capitalization of any letters is different.

Volltext:

1. Similar to the search criterion ’Term’, a type can also be selected here:
Matching - A match occurs when the specified expression is identical to the indexed full
text.
Contains phrase - A match occurs when the specified expression matches a part of the
indexed full text.
Begins with phrase - A match occurs when the indexed full text begins with the speci-
fied expression.
Apply query syntax - A pre-defined search syntax by Elasticsearch is applied.
Simple query syntax - A pre-defined simplified search syntax by Elasticsearch is ap-
plied. It offers fewer options than the normal search syntax but is more error-tolerant.

3. Fields
After selecting amapping, the fields of the external index are displayed here. Additional func-
tions and options can be assigned to each field individually. For this, there is the following
configuration view:

The fields of the locally created schema are visible here. If a specific field is specified in a
query to be searched with a custom parameter, the name of the parameter is displayed in
the corresponding row under Parameters. For each field, the Cause can be activated. If

Users’Manual 5.7
186/191

this is the case, the values of this field will be displayed in the result table. Highlight can
be activated for each field to highlight matches on this field in the result table. Additionally,
a facet can be added to each field, which is done by selecting the field and using the Add
Facet button. Facets can also be removed with Remove Facet. Facets provide the ability to
group and categorize matches using terms or values. The Refresh button reloads the view.
Note: Facets are not compatible with every data type, such as Text or Search-as-you-type,
but only for groupable values like integers and floats, keywords, or time and date values.
4. Settings
Additionally, further settings can be made that affect the result set:

1. Restrict result set size
If enabled: The results of a query to the external index can be limited by inserting a
limit (integer) into the input field. All results are based on a score assigned by Elastic-
search, where a higher score indicates greater relevance. Limiting involves listing the
most relevant results in descending order.

2. Minimal Elasticsearch Score
If enabled: The results of a query are limited based on the score assigned by Elastic-
search. The value entered into the input field (float) serves as the threshold. Only results
with a score above this value are considered.

To test the search behavior of a query, the testing environment can be opened to the right of
the settings:

1. Here, a search text can be entered.
2. If parameters are defined during the configuration of queries, they are listed here. It is
possible to set a custom value for each parameter individually using Set value for the
test search. The value can also be cleared with Reset. Once all values are set or a search
text is entered, the test search can be initiated by clicking Search.

Users’Manual 5.7
187/191

3. After executing the test search, all matches of the query are listed here. The Reason col-
umn indicates for each match why the object is considered a match with respect to the
query. In the Quality column, each match is assigned a score. This is displayed as a
float, where a value of 1.0 represents the highest score. The score indicates how pre-
cisely the search criterionmatches the result compared to all other matches. The higher
the score, the more match and relevance.

Note: It is advisable to refrain from setting values for the parameters and using the search
text simultaneously, as unexpected effects may occur.

1.5.5.9 Settings
In addition to exporting data, metadata for the external index can also be exported. These
can be displayed using Elasticvue:

After expanding the gear icon, metadata can be viewed under Show info. Among the meta-
data are details such as the name of the external index, possible aliases, the exported schema
with all defined fields, as well as settings. Some settings are automatically generated during
the creation of the external index. However, there are also settings that can be manually
configured, including analyzers, for example. More information can be found here.
In the Knowledge-Builder, the settings can be configured in the Elasticsearch mapping under
the Settings tab. The input field can be used to define it in JSON:

1. The input field for the settings. The definition of the settings is done in JSON.
2. This allows inserting a template into the input field, serving as a basis.
3. The settings from Elasticsearch are loaded into the local input field.
4. The defined settings are sent from the input field to the external index.

Note: Both successful setup of the settings and an error display a status under the input

Users’Manual 5.7
188/191

field. In case of an error, the type of error is also indicated. This could be, for example, an
invalid format or a connection error to the external index.

1.5.5.9.1 Analyzer
Another feature of Elasticsearch is the so-called analyzers. Elasticsearch provides a variety of
text analysis functions that can be formulated in JSON and bound to a field of the external
index as an analyzer. This allows data for individual fields to be adjusted during export and
expands search capabilities. Detailed documentation on Elasticsearch can be found here.
In the Knowledge-Builder, there is a configuration view similar to the one for the settings
when selecting the Analyzer tab. After defining an analyzer und exporting it to the external
index, it can then be selected by editing a field:

Next to a few basic preset analyzers, the custom analyzer is shown at the top of the list. If
more than one custom analyzer is defined, it will also be shown at the top. After choosing an
analyzer, it will now be displayed underModifiers in the local schema.
Hint: Analyzers are only compatible with text fields!
After an analyzer was bound to a field, it will be applied to the external index which extends
the search options for that specific field.

1.5.6 Restore deleted individuals from a back up
The RDF export and import is suitable for restoring deleted individuals from a backup Knowl-
edge Graph. Proceed as follows to do so:
1. Open the backup Knowledge Graph in the Knowledge Builder
2. Create a new folder and save the individuals to be restored to it. To do so, right-click to
open the context menu in the list view of the individuals to be copied, and select “Copy
content to new folder” while selecting the new folder as the destination.

3. Open the RDF export on the newly created folder using the context menu
4. Specify a file name in the export dialog, select the options “Use URLS (rdf:about)” and
“Use frame URLs (krdfframe:)” and execute the export:

Users’Manual 5.7
189/191

Note: the option “Use KRDF” results in i-views additionally copying specific content that
cannot be mapped in full by means of RDF syntax.

5. Close the Knowledge Builder and open the target graph in the Knowledge Builder
6. Open the RDF import dialog in the main menu under Tools > RDF > RDF import:

7. Select the file and press “Next”:

Users’Manual 5.7
190/191

8. Deactivate the option “Allow changes to the schema” in the selection dialog, and activate
“Create folder with imported objects”:

9. Execute import
10. Check the restored individuals

Users’Manual 5.7
191/191

1.5.7 Transport selected schema
The Admin tool can be used to transfer the entire schema from one Knowledge Graph to
another via RDF export and import. However, if you only want to transfer selected types, you
should consider using the “Copy schema to folder” function, which is available for all types
via the context menu. This function creates a reference to the selected type together with all
other (property) types that are required to create the selected type or objects of this type in
the target graph.
Once you have collected all required information in a folder, you can export this and import
it into the target Knowledge Graph in the same way as described in the previous chapter.
However, the “Allow changes to schema” option should be deactivated in this case.

	Knowledge-Builder
	Basics
	The Knowledge Builder application
	Building blocks
	Type hierarchy - Inheritance
	Create and edit objects
	Graph editor

	Definition of schema / model
	Define types
	Relation types and attribute types
	Model changes
	Representation of schema in the graph editor
	Metamodeling and advanced constructs
	Indexing

	Searches/Queries
	Structured queries
	Simple Search / Fulltext search
	Search pipeline
	Model "hit"
	The search in the Knowledge Builder
	Special cases

	Folder and registration
	Import and export
	Mapping of data sources
	Attribute types and formats
	Configuration of the export
	RDF-import and -export
	External Index in Elasticsearch
	Restore deleted individuals from a back up
	Transport selected schema

